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NoSE: Schema Design for NoSQL Applications
Michael J. Mior, Kenneth Salem, Ashraf Aboulnaga, and Rui Liu

Abstract—Database design is critical for high performance in relational databases and a myriad of tools exist to aid application
designers in selecting an appropriate schema. While the problem of schema optimization is also highly relevant for NoSQL databases,
existing tools for relational databases are inadequate in that setting. Application designers wishing to use a NoSQL database instead
rely on rules of thumb to select an appropriate schema. We present a system for recommending database schemas for NoSQL
applications. Our cost-based approach uses a novel binary integer programming formulation to guide the mapping from the
application’s conceptual data model to a database schema. We implemented a prototype of this approach for the Cassandra extensible
record store. Our prototype, the NoSQL Schema Evaluator (NoSE) is able to capture rules of thumb used by expert designers without
explicitly encoding the rules. Automating the design process allows NoSE to produce efficient schemas and to examine more
alternatives than would be possible with a manual rule-based approach.
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1 INTRODUCTION

NOSQL systems have become a popular choice as data-
base backends for applications because of the high

performance, scalability, and availability that they provide.
In this paper, we focus on systems that Cattell termed
extensible record stores in his taxonomy of NoSQL systems [1].
In these extensible record stores, applications can create
tables of records, with each record identified by a key.
However, the application need not define the set of columns
in the records in advance. Instead, each record can have
an arbitrary collection of columns, each with an associated
value. Because of this flexibility, applications can encode
their data in both the keys and column values. We refer
to tables in such systems as column families. Examples of
extensible record stores that support this column family
model include Cassandra [2], HBase [3], and Bigtable [4].

Before a developer can build an extensible record store
application, it is necessary to define a schema for the under-
lying record store. Although the schema of an extensible
record store is flexible in the sense that the application
does not need to define specific columns in advance, it is
still necessary to decide what column families will exist
in the record store, and what information each column
family encodes. These choices are important because the
performance of the application depends strongly on the un-
derlying schema. For example, some schemas may provide
answers to queries with a single lookup while others may
require multiple requests to the extensible record store.

Although it is important to choose a good schema, there
are no tools or established methodologies to guide and
support this process. Instead, schema design for extensi-
ble record stores is commonly based on general heuristics
and rules of thumb. For example, eBay [5] and Netflix [6]
have shared examples and general guidelines for designing
schemas for Cassandra. Specific recommendations include
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not designing column families as one would design re-
lational tables, ensuring that column families reflect the
anticipated workload, and denormalizing data in the record
store. While such recommendations are useful, they are
necessarily vague and generic, and require adaptation to
each application.

In this paper, we propose a more principled approach to
the problem of schema design for extensible record stores.
Our objective is to replace general schema design rules of
thumb with a tool that can recommend a specific schema
optimized for a target application. Our tool uses a cost-
based approach. By estimating the performance that can-
didate schemas would have for the target application, we
recommend the schema that results in the best estimated
performance. We designed our tool for use early in the
application development process; the tool recommends a
schema and the application is then developed using that
schema. In addition to providing a schema definition, our
tool also recommends a specific implementation of the ap-
plication’s queries against the proposed schema.

This work makes the following contributions. First, we
formulate the schema design problem for extensible record
stores. Second, we propose a solution to the schema design
problem embodied in a schema design advisor we call NoSE,
the NoSQL Schema Evaluator. We start with a conceptual
model of the data required by a target application as well as
a description of how the application will use the data. NoSE
then recommends both an extensible record store schema,
i.e., a set of column family definitions optimized for the
target application, and guidelines for developing applica-
tions using this schema. Finally, we present a case study
and evaluation of NoSE, using two application scenarios.

NoSE was originally presented in an earlier paper [7].
In this extended presentation, we described how NoSE sup-
ports a broader class of queries, namely those with acyclic
query graphs. We also include additional information about
costing and update plan generation, as well as a new appli-
cation case study (Section 8).
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Fig. 1. Entity graph for a hotel booking system. Each box represents an
entity set, and edges between boxes represent relationships.

2 SCHEMA DESIGN EXAMPLE

In this section we present a simple example to illustrate
the schema design problem for extensible record stores.
Suppose we are building an application to manage hotel
reservations. The conceptual model in Figure 1, adapted
from Hewitt [8], describes the application’s data.

The schema design problem for extensible record stores
is the problem of deciding what column families to create
and what information to store in each column family, for a
given application. In general, this will depend on what the
target application needs to do. For example, suppose that
the application will need to use the extensible record store
to obtain information about the points of interest (POIs)
near hotels booked by a guest, given the guest’s GuestID.
The primary operations supported by an extensible record
store are retrieval (get) or update (put) of one or more
columns from a record, given a record key. Thus, an ap-
plication could easily answer this query if the record store
included a column family with GuestIDs as record keys
and columns corresponding to POIs. That is, the column
family would include one record for each guest. A guest’s
record includes one column for each POI associated with a
hotel at which that guest has booked a room. The column
names are POIIDs, and each column stores a composite
value consisting of POIName and POIDescription. In
general, each guest’s record in this column family may have
different columns. Furthermore, the application may add
or remove columns from a guest’s record when updating
that guest’s hotel bookings in the record store. With such a
column family, the application can obtain point of interest
information for a given guest using a single get operation.
This column family is effectively a materialized view which
stores the result of the application query for all guests.

In this paper, we will describe such a column family
using the following triple notation:

[GuestID][POIID][POIName, POIDescription]

The first element of the triple indicates the attribute values
used as record keys in the column family. The second ele-
ment indicates the attribute values used as column names,
and the third indicates those used as column values. We
refer to the first element as the partitioning key, since exten-
sible record stores typically horizontally partition column
families based on the record keys. We refer to the second
element as the clustering key, since extensible record stores
typically physically cluster each record’s columns by col-
umn name. We assume records in each partition are sorted
according to the clustering key.

Although this column family is ideal for executing the
single application query we have considered, it may not be
ideal when we consider the application’s entire workload.
For example, if the application expects to be updating the
names and descriptions of points of interest frequently, the
above column family may be not be ideal because of the
denormalization of point of interest information, i.e., the
name and description of a POI may appear multiple times
in the records for different guests. Instead, it may be better
to create two column families, as follows:

[GuestID][POIID][]
[POIID][][POIName, POIDescription]

This stores information about each point of interest once,
in a separate column family, making it easy to update.
Similarly, if the application also needs to perform another
query that returns information about the points of interest
near a given hotel, it may be better to create three column
families, such as these:

[GuestID][HotelID][]
[HotelID][POIID][]
[POIID][],[POIName, POIDescription]

In this schema, which is more normalized, records in the
third column family consist of a key (a POIID) and a single
column which stores the POIName and POIDescription
as a composite value. The second column family, which
maps HotelIDs to POIIDs, will be useful for both the
original query and the new one.

The goal of our system, NoSE, is to explore this space of
alternatives and recommend a good set of column families,
taking into account both the entire application workload
and the characteristics of the extensible record store.

NoSE solves a schema design problem similar to the
problem of schema design for relational databases. How-
ever, there are also significant differences between the two
problems. Relational systems provide a clean separation
between logical and physical schemas. Standard procedures
exist for translating a conceptual model, as in Figure 1, to
a normalized logical relational schema, i.e., a set of table
definitions, usable for defining the application’s workload.
The logical schema often determines a physical schema
consisting of a set of base tables. The physical layout of
these base tables is then optimized and supplemented with
additional physical structures, such as indexes and materi-
alized views, to tune the physical design to the anticipated
workload. There are many tools for recommending a good
set of physical structures for a given workload [9], [10], [11],
[12], [13], [14], [15], [16].

Extensible record stores, in contrast, do not provide a
clean separation between logical and physical design. There
is only a single schema, which is both logical and physical.
Thus, NoSE starts with the conceptual model, and produces
both a recommended schema and plans for implementing
the application against the schema. Further, the schema
recommended by NoSE represents the entire schema, not
a supplement to a fixed set of base tables. Unlike most
relational physical design tools, NoSE must ensure that
the workload is covered, i.e., that the column families it
recommends are sufficient to allow for the implementation
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Fig. 2. Schema advisor overview

SELECT Guest.GuestName, Guest.GuestEmail FROM
Guest.Reservation.Room.Hotel WHERE
Hotel.HotelCity = ?city AND
Room.Amenity.AmenityName = ?amenity AND
Room.RoomRate > ?rate

Fig. 3. An example query against the hotel booking system schema

of the entire workload. We provide further discussion of
relational physical design tools in Section 10.

3 SYSTEM OVERVIEW

Figure 2 gives a high level illustration of the NoSE schema
advisor. We designed NoSE for use early in the process
of developing an extensive record store application. The
advisor produces two outputs. The first is a recommended
schema, which describes the column families used to store
the application’s data. The second output is a set of plans,
one plan for each query and update in the workload. Each
plan describes how the application should use the column
families in the recommended schema to implement a query
or an update. These plans serve as a guide for the applica-
tion developer.

3.1 Database Conceptual Model
To recommend a schema for the target application, NoSE
must have a conceptual model describing the information
to store in the record store. NoSE expects this conceptual
model in the form of an entity graph, such as the one shown
in Figure 1. Entity graphs are simply a restricted type of
entity-relationship (ER) model [17]. Each box represents a
type of entity, and each edge is a relationship between
entities and the associated cardinality of the relationship
(one-to-many, one-to-one, or many-to-many). Entities have
attributes, with one of these serving as a key. For example,
the model shown in Figure 1 indicates that each room has
a room number and rate. In addition, each room has is
associated with a hotel and set of reservations.

3.2 Workload Description
The target application’s workload is a set of parameterized
query and update statements. Each query and update has
an associated weight indicating its relative frequency in the
anticipated workload. We focus here on the queries, and
defer discussion of updates to Section 7.

Each query in the workload returns information about
one or more entities in the entity graph. Figure 3 shows
an example of a NoSE query, expressed using an SQL-like

Guest Reservation
1

Room

Amenity

  3

Hotel
2

Fig. 4. Query graph for the query in Figure 3. We describe the edge
labels in Section 4.1.2.

syntax, which returns the names and email addresses of
guests who have reserved rooms with a particular amenity
in given city at a given minimum rate. In this example,
?city, ?amenity and ?rate are parameters. NoSE ex-
presses queries directly over the conceptual model. Specifi-
cally, each query implies a query graph which is a subgraph
of the entity graph. A path referenced in the FROM clause
defines a portion of this graph. A query can define branches
in the graph by specifying additional paths for attributes in
the SELECT or WHERE clauses. The current implementation
of NoSE is restricted to acyclic query graphs. However, this
is not a fundamental limitation to our approach. We note
that queries are required to have an equality predicate on
the first entity set in the FROM clause in order to construct
a valid get request to the underlying datastore. Figure 4
shows an example of a query graph.

To define the semantics of these queries, we must con-
sider which tuples a query produces. Conceptually, we con-
sider the tuples produced by the join of all the relations in
the query graph using the associated relationships between
entity sets. These tuples are then filtered using the predicates
given in the query. This means that a query returns data
about a particular entity if there exists a series of related
entities in the query graph that together satisfy the predicate
of the query. Query results retain any duplicates in the
resulting list of tuples.

We emphasize that the underlying extensible record
store supports only simple put and get operations on col-
umn families, and is unable to directly interpret or execute
queries like the one shown in Figure 3. Instead, the appli-
cation itself must implement queries such as this, typically
using a series of get operations, perhaps combined with
application-implemented filtering, sorting, or joining of re-
sults. Nonetheless, by describing the workload to NoSE in
this way, the application developer can convey the purpose
of a sequence of low-level operations, allowing NoSE to
optimize over the scope of entire high-level queries, rather
than being restricted to individual low-level optimizations.
Of course, another problem with describing the application
workload to NoSE in terms of get and put operations on
column families is that the column families are not known.
Indeed, the purpose of NoSE is to recommend a suitable set
of column families for the target application.

Although it is not shown in Figure 3, NoSE queries can
also specify a desired ordering on the query results, using an
ORDER BY clause. This allows NoSE to recommend column
families which exploit the implicit ordering of clustering
keys to produce results in the desired order.
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3.3 Extensible Record Stores
The target of our system is extensible record stores, such
as Cassandra or HBase. These systems store collections of
keyed records in column families. Records in a collection
need not all have the same columns.

Given a domain K of partition keys, an ordered domain
C of clustering keys, and a domain V of column values, we
model a column family as a table of the form

K 7→ (C 7→ V)

That is, a column family maps a partition key to a set of
clustering keys, each of which maps to a value. Clustering
keys provide an order for records in a single partition. For
example, in Section 2, we used an example of a column fam-
ily with GuestIDs as partition keys, POIIDs as clustering
keys, and POI names and descriptions as values. Such a
column family would have one record for each GuestID,
with POI information for that guest’s records clustered
using the POIID.

We assume that the extensible record store supports only
put, get, and delete operations on column families. To
perform a get operation, the application must supply a
partition key and a range of clustering key values. The
get operation returns all C 7→ V pairs within the speci-
fied clustering key range, for the record identified by the
partition key. For example, the application could use a
get operation to retrieve information about the points of
interest associated with a given GuestID. Similarly, a put
operation can modify the C 7→ V pairs associated with a
single partition key, and a delete operation deletes C 7→ V
pairs associated with a given partition key.

Some extensible record stores provide additional capa-
bilities beyond the three basic operations we have described.
For example, in HBase it is possible to get information
for a range of partition keys, since records are also sorted
based on their partition key. As another example, Cassandra
provides a limited form of secondary indexing, allowing
applications to select records by something other than the
partitioning key. However, many Cassandra applications do
not use secondary indexes for performance reasons [18].
For simplicity, we restrict ourselves to the simple get/put
model we have described, as it captures common function-
ality.

3.4 The Schema Design Problem
A schema for an extensible record store consists of a set of
column family definitions. Each column family has a name
as an identifier and its definition includes the domains of
partition keys, clustering keys, and column values used in
that column family.

Given a conceptual model (optionally with statistics
describing data distribution), an application workload, and
an optional space constraint, the schema design problem
is to recommend a schema such that (a) each query in the
workload is answerable using one or more get requests to
column families in the schema, (b) the weighted total cost
of answering the queries is minimized, and optionally (c)
the aggregate size of the recommended column families is
within a given space constraint. Solving this optimization
problem is the objective of our schema advisor. In addition

Fig. 5. Complete schema advisor architecture

to the schema, for each query in the workload, NoSE rec-
ommends a specific plan for obtaining an answer to that
query using the recommended schema. We discuss these
plans further in Section 4.2.

4 SCHEMA ADVISOR

Given an application’s conceptual model and workload, as
shown in Figure 2, NoSE proceeds through four steps:

1) Candidate Enumeration Generate a set of candi-
date column families, based on the workload. By
inspecting the workload, the advisor generates only
candidates which may be useful for answering the
queries in the workload.

2) Query Planning Generate a space of possible imple-
mentation plans for each query. These plans make
use of the candidate column families produced in
the first step.

3) Schema Optimization Generate a binary integer
program (BIP) from the candidates and plan spaces.
The BIP is then given to an off-the-shelf solver (we
have chosen to use Gurobi [19]) which chooses a
set of column families that minimizes the cost of
answering the queries.

4) Plan Recommendation Choose a single plan from
the plan space of each query to be the recommended
implementation plan for that query based on the
column families selected by the optimizer.

Figure 5 illustrates this process. In the reminder of
this section, we discuss candidate enumeration and query
planning. Section 5 presents schema optimization and plan
recommendation.

4.1 Candidate Enumeration

One possible approach to candidate enumeration is to
consider all possible column families for a given set of
entities. However, the number of possible column families
is exponential in the number of attributes, entities, and
relationships in the conceptual model. Thus, this approach
does not scale well.



5

function: Materialize
input : A query q
output : A materialized view for the query

// first entity equality predicates
1 K ← [c.attr |c ∈ q.where ∧ c.op = '='

∧ c.attr.entity = q.from[0]];

// all other equality predicates
2 C ← [c.attr |c ∈ q.where ∧ c.op = '='

∧ c.entity ̸= q.from[0]];

// add all other predicates
3 C ← C + [c.attr | c ∈ q.where ∧ c.attr /∈ K

∪
C];

// add ordering attributes
4 C ← C + (q.order by \ C);
// end with IDs from all entities

5 C ← C + [e.id |e ∈ entities(q)

∧ e /∈ {a.entity | a ∈ C}];

// selected attributes as values
6 V ← q.select \ K \ C;

7 return K 7→ (C 7→ V);

Alg. 1. Materialized view column family generation

Instead, we enumerate candidates using a two-step pro-
cess based on the application’s workload. First, we inde-
pendently enumerate a set of candidate column families for
each query in the application workload. The union of these
sets is the initial candidate pool. Second, we supplement
this pool with additional column families constructed by
combining candidates from the initial pool. The goal of the
second step is to add candidates which are likely to be useful
for answering more than one query while consuming less
space than two separate column families. We do not claim
that NoSE’s candidate enumerator guarantees the enumer-
ation of column families which result in an optimal schema
However, the optimization process we discuss in Section 5
chooses an optimal subset of the enumerated candidates
for the given cost model. NoSE’s candidate enumerator
is pluggable and could be replaced with any enumerator
which produces valid column families capable of answering
queries in the given workload. We leave other heuristics to
determine additional useful column families as future work.

4.1.1 Candidate Column Families
Recall from Section 3.3 that a column family is a mapping of
the form K 7→ (C 7→ V). To define a specific column family,
we need to determine K, C, and V . That is, we need to
specify what the keys, columns, and values will be for the
column family.

We consider column families in which keys, columns,
and values consist of one or more attributes from the appli-
cation’s conceptual model. We represent each column family
as a triple, consisting of a set of partition key attributes, an
ordered list of clustering key attributes, and a set of value
attributes. For example, we can define a column family
useful for retrieving, for a given city and state, a list of hotel
names, addresses, and phone numbers, in order of hotel

name. We represent this column family by the following
triple:

[HotelCity, HotelState][HotelName,
HotelID][HotelAddress, HotelPhone].

Column families are not limited to containing informa-
tion on a single entity from the conceptual model. For any
query in our language, we can define a column family useful
for directly retrieving answers to that query, which we call a
materialized view. Algorithm 1 describes how NoSE generates
materialized views from queries. For example, the query
shown in Figure 3, which returns the names and emails
of guests who have reserved rooms at hotels in a given
city, at room rates above a given rate with a given amenity,
corresponds to the following materialized view:

[HotelCity, AmenityName][RoomRate, AmenityID,
HotelID, RoomID, ResID, GuestID][GuestName,
GuestEmail]

By supplying city and amenity names, and a
minimum room rate, an application can use this
column family to retrieve a list of tuples, each of the
form (RoomRate, AmenityID, HotelID, RoomID,
ResID, GuestID,GuestName,GuestEmail). Each
tuple corresponds to a distinct room reservation of a hotel
room with the specified amenity and minimum room rate.
The query returns tuples in order of RoomRate.

4.1.2 Per-Query Candidate Enumeration
The schema optimizer requires flexibility in the choice of
column families since its space budget may not allow the
recommendation of a materialized view for each query. In
addition, when we later consider updates, a column family
for each query may become too expensive to maintain.
Therefore, in addition to the materialized view, the enumer-
ator also includes additional column families provide partial
answers for each query. The application can use these to
answer the query by combining the results of multiple get
requests to different column families.

To generate the full pool of candidate column families
for a given query, we decompose the query at each possible
edge in the query graph. Decomposing a query at a specific
edge in the query graph splits the query into two parts,
which we call the prefix query and the remainder query. Later,
when constructing a query plan, the planner joins these
decomposed query graphs along the cut edges to produce a
complete plan for a query. Figure 6 illustrates the first level
of this recursive splitting process for the example query
from Figure 3. We show the decomposition for just the three
labelled edges in (Figure 4).

For each of the generated prefix/remainder queries,
NoSE first enumerates its materialized view. If the SELECT
clause of the prefix query includes non-key attributes, NoSE
enumerates two additional candidates: one that returns only
the key attributes, and a second that returns required non-
key attributes given the key. For example, for the query in
Figure 3, in addition to the materialized view, the enumera-
tor will also generate the following two candidates:

[HotelCity,AmenityName][RoomRate,AmenityID,
HotelID, RoomID, ResID, GuestID][]
[GuestID][][GuestName,GuestEmail]
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Decomposition
Edge Prefix query Remainder query

1
SELECT Reservation.ResID FROM
Reservation.Room.Hotel WHERE Hotel.HotelCity = ?
AND Room.Amenity.AmenityName = ?
AND Reservation.Room.RoomRate > ?

SELECT Guest.GuestName, Guest.GuestEmail FROM
Guest WHERE Guest.Reservation.ResID = ?

2
SELECT Hotel.HotelID FROM Hotel
WHERE Hotel.City = ?

SELECT Guest.GuestName, Guest.GuestEmail FROM
Guest.Reservation.Room.Hotel
WHERE Hotel.HotelID = ? AND Room.RoomRate > ?
AND Room.Amenity.AmenityName = ?

3
SELECT Amenity.AmenityID FROM
Amenity WHERE Amenity.AmenityName = ?

SELECT Guest.GuestName, Guest.GuestEmail FROM
Guest.Reservation.Room.Hotel WHERE
Hotel.HotelCity = ? AND Room.Amenity.AmenityID = ?
AND Room.RoomRate > ?

Fig. 6. Example of query decomposition for candidate enumeration for the query in Figure 3

The former is useful for returning a set of GuestIDs, given
a city, an amenity, and a room rate, and the latter can then
produce the guests’ names and email addresses.

Finally, the enumerator may generate additional candi-
dates corresponding to relaxed versions of the prefix query.
Specifically, when the enumerator considers a query of the
form

SELECT attributes FROM path-prefix WHERE
path.attr op ? AND predicate2 AND ...

it also generates materialized views for relaxed queries of
the form

SELECT attributes, attr FROM
path-prefix WHERE predicate2 AND ...

That is, the enumerator removes one or more predicates and
adds the attributes involved in the predicates to the SELECT
clause.

Predicates are only considered for removal if the remain-
ing query will have at least one equality predicate remain-
ing. (The application will require this to construct a valid
get request on the column family in the recommended
plan.) NoSE also relaxes queries involving ordering in the
same way, by moving an attribute in an ORDER BY clause
to the SELECT list.

The full enumeration algorithm is given in Algorithm 2.
For a query with k edges, this algorithm will generate at
least Nk = 1 + k +

∑k−1
j=1 Nj = 2k+1 − 1 candidate column

families, ignoring any relaxed prefix queries. The number
of relaxed prefix queries is exponential in the number of at-
tributes occuring in the WHERE and ORDER BY clauses, since
Relax(p) considers all subsets of those attributes. Thus, the
number of candidates per query grows exponentially with
both the size of the query graph and the size of the WHERE
and ORDER BY clauses.

4.1.3 Candidate Combinations
Once the enumerator has produced candidates for each
query in the workload, it then generates additional can-
didates by combining the per-query candidates that are
already present in the pool. Specifically, the enumerator
looks for pairs of column families for which both have the
same partition key (K), neither has a clustering key (C), and
each has different data attributes (V). For each such pair, the
enumerator generates an additional candidate that has the

function: Enumerate
input : A query q
output : Enumerated column families for q
// create a materialized view

1 C ← {Materialize(q)};
2 foreach edge e in q.graph do
3 // split prefix and remainder
4 p, r ← Decompose(q, e);

// add relaxed prefix queries
5 C ← C

∪
{Materialize(q′) | q′ ∈ Relax(p)};

// materialize prefix and recurse
6 C ← C

∪
{Materialize(p)}

∪
Enumerate(r);

7 return C;

Decompose splits the query graph in two on the given edge.
Relax produces relaxed prefix queries as described in the text.

Alg. 2. Column family enumeration

same partition keys and all the data attributes from both of
the column families it identified. Thus, the new candidate
will be larger than either of the original candidates but will
be potentially useful for answering more than one query.

There are additional opportunities for creating new col-
umn families by combining candidates from the pool, but
NoSE’s enumerator currently only exploits this one type of
combination. Increasing the number of candidates increases
the opportunity for the schema advisor to identify a high-
quality schema (i.e. one with lower cost) but this also
increases the running time of the advisor. As future work,
we intend to explore other opportunities for candidate gen-
eration in light of this tradeoff as well as heuristics to prune
column families which are unlikely to be useful.

4.2 Query Planning

One component of the output of NoSE is a query execution
plan for each query in the input workload. Query execution
plans consist of a series of three possible steps: (a) a get or
put request to the underlying data store, (b) filtering of data
fetched from the data store by the application, or (c) sorting
of data by the application. Each of these operations has an
associated cost, which we describe in Section 6. These plans
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CF1 [HotelCity][AmenityID,RoomRate,RoomID][]
CF2 [HotelCity][AmenityID,RoomID][]
CF3 [HotelCity][HotelID][]
CF4 [HotelID][AmenityID,RoomID][]
CF5 [RoomID][][RoomRate]

Fig. 7. Example query plan space

describe to application developers how each query should
be implemented.

The task of the query planner is to enumerate all possible
plans for evaluating a given query, under the assumption
that all candidate column families are available. Each plan
is a sequence of steps, using candidate column families,
that will produce an answer to an application query. We
refer to the result of this process as the plan space for the
given query. Later, during schema optimization, the schema
advisor will use the plan spaces for each query to determine
which candidate column families to recommend.

NoSE performs query planning as part of the same
recursive decomposition process that generates candidate
column families. Consider the decomposition of the running
example query (Figure 3) shown in Figure 6. For each prefix
query, the query planner generates a set of implementation
plans, each of which starts by retrieving the results of the
prefix query, and finishes by joining those results to a (re-
cursively calculated) plan for the corresponding remainder
query. When generating plans for a prefix query, the planner
will generate one set of plans for each candidate column
family generated for that prefix query, and for any other
candidate column families that subsume a candidate for the
prefix query. In general, because query planning is based
on the same recursive decomposition used to enumerate
candidate column families (Algorithm 2), the size of the plan
space for a query with k edges in its query graph grows
exponentially with k.

Figure 7 shows the plan space for the query below:

SELECT Room.RoomID FROM Room WHERE
Room.Hotel.HotelCity = ?city AND
Room.Amenity.AmenityID = ?amenityID AND
Room.RoomRate > ?rate

There are three possible plans in the plan space. The
first uses the materialized view CF1 to answer the query
directly. The second finds the HotelID for all hotels in a
given HotelCity using CF3. The HotelID is then used to
find all the RoomIDs for the given hotel using CF4. Finally,
application discovers the RoomRates using CF5 and filters

minimize
∑
i

∑
j

fiCijδij

subject to
All used column families being present
δij ≤ δj ,∀i, j

Maximum space usage S∑
j

sjδj ≤ S

Plus per-query plan graph constraints (see text)

Fig. 8. Binary integer program for schema optimization

the RoomIDs to only contain those matching the predicated
on RoomRate. The final plan is similar, but goes directly
from a HotelCity to a list of RoomIDs using CF2.

When developing a query plan, it is necessary to select
an order in which to execute each individual query and
join the values based on the IDs of each entity. Since we
require at least one equality predicate for each get request,
we start with the equality predicate in the query graph with
the lowest cardinality. Entities in the query graph are then
selected based on those reachable from the currently joined
entities and in order by increasing cardinality. While this
is not guaranteed to be optimal, choosing entities in this
order reduces the size of intermediate result sets. There are
many possible alternative heuristics [20] but we use this for
simplicity.

5 SCHEMA OPTIMIZATION

A naı̈ve approach to schema optimization is to examine each
element in the power set of candidate column families and
evaluate the cost of executing each workload query using
a plan that involves only the selected candidates. However,
this approach scales poorly as it is exponential in the total
number of candidate column families.

Papadomanolakis and Ailamaki [14] present a more
efficient approach to the related problem of index selection
in relational database systems. Their approach formulates
the index selection problem as a binary integer program
(BIP) which selects an optimal set of indices based on the
index configurations that are useful for each query in the
workload. Their approach uses a set of decision variables for
each query, with the number of variables per query equal to
the number of combinations of indices useful to that query.
This is still exponential, like the naı̈ve approach, but only in
the number of indices relevant to each query, rather than the
total number of candidate indices.

Like Papadomanolakis and Ailamaki, we have imple-
mented schema optimization by formulating the problem
as a BIP. However, because of the simple structure of the
query implementation plans that our schema advisor con-
siders, we are able to provide a simpler formulation for our
problem.

Our schema advisor uses the query plan spaces de-
scribed in Section 4.2 to generate a BIP. A binary decision
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δ1,4≤ δ1,3

δ1,5≤ δ1,2 + δ1,4

δ1,j≤ δj∀j ∈ {1, 2, 3, 4, 5}
δ1,1 + δ1,2 + δ1,3= 1

δ1,1 + δ1,2 + δ1,4= 1

δ1,1 + δ1,5= 1

Fig. 9. BIP constraints for the plan graph from Figure 7

variable, δij , exists for each combination of a candidate col-
umn family and a workload query. The variable δij indicates
whether the ith query will use the jth column family in
its implementation plan. The objective of the optimization
program is to minimize the quantity

∑
i

∑
j fiCijδij , where

Cij represents the cost of using the jth column family in
the plan for the ith query and fi is the query frequency.
However, after solving this optimization problem, we run
the solver again with an additional constraint that the cost
of the workload equals the minimum value which was just
discovered, and with the objective of minimizing the total
number of column families in the recommended schema.
This allows NoSE to produce the schema with the smallest
number of column families out of the set of those which are
most efficient.

In addition to the decision variables δij , our program
formulation uses one other decision variable per candidate
column family. These variables indicate whether the so-
lution includes the corresponding column families in the
set recommended by the schema advisor. We use δj to
represent this per-column-family decision variable for the
jth candidate column family. Our BIP includes constraints
that ensure that

• the solution includes the jth column family in the
recommendation if the solution uses it in the plan
for at least one query, and

• (optionally) that the total size of the recommended
column families is less than the specified space con-
straint.

To allow sorting to occur at any point in query execution, we
also add a constraint that results are properly sorted. Over-
all, this approach requires |Q||P | variables representing the
use of column families in query implementation plans, and
|P | variables representing candidate column families, where
|Q| represents the number of queries and |P | is the number
of candidate column families (Section 4.1.2). We also allow
an optional storage constraint whereby the user can specify
a limit S on the amount of storage occupied by all column
families. The estimated size of each column family sj is also
given as a parameter to the BIP. Figure 8 summarizes the
binary integer program.

As noted in Figure 8, the BIP also requires a set of plan
graph constraints, on the variables δij , which ensure that the
solver will choose a set of column families for each query
that correspond to one of the plans in the query plan space.
These constraints derive from the per-query plan spaces
determined by the query planner. For example, in Figure 7,
the solution can select at most one of CF1, CF3, and CF2

to answer this query, since each is useful for different plans,
and the solution selects only one plan per query. In addition,
if the solution selects CF3, then it must also select CF4 and
CF5. The BIP will include corresponding constraints on the
decision variables δij that indicate whether the solution will
use those column families to answer this query. Figure 9
shows the plan graph constraints for the example shown in
Figure 7.

After solving the BIP, making the final plan recom-
mendation is straightforward. There is a unique plan with
minimal cost based on the values of the decision variables
in the BIP.

6 COST MODEL

The BIP constants Cij represent the cost of using a particular
column family in the plan for a particular query. For the
example shown in Figure 7, there will be five such constants,
one for each column family node in the plan graph. As it
generates the BIP, NoSE uses its cost model to determine
values for these constants.

Each lookup node in the plan graph represents one or
more get operations against a particular column family.
The corresponding BIP constant represents the total cost of
all such get operations. NoSE estimates each node’s total
cost using a two-parameter cost function T (n,w), where n
represents the number of get operations that the plan will
perform against the column family, and w represents the
“width” of each request, i.e., the number of C 7→ V pairs
that will be returned by each get.

NoSE’s plans involve only a single get from the first
column family in each plan. Thus, n = 1 for the first column
family. The number of get operations for the next column
family depends on the number of results returned from the
get on the first column family. Thus, to estimate values of
n for each column family in a plan, NoSE first estimates the
result cardinality of the preceding column family - much
as in join size estimation in relational database systems.
For these cardinality estimates, NoSE currently makes use
of simple statistical metadata that is described in terms
of the conceptual model and provided as part of NoSE’s
input. Specifically, a user can provide the cardinality of each
attribute in each entity set to NoSE. In addition, NoSE makes
use of relationship cardinality constraints from the concep-
tual model and simple uniformity assumptions. NoSE also
uses this same metadata, as well as the properties of the
query, to estimate the value of w for each column family.
This is a very simplistic approach to cardinality estimation.
However, cardinality estimation (and costing in general) is
not the focus this work, and NoSE’s current approach could
easily be replaced by a more sophisticated one.

NoSE’s query plans may also include application-side fil-
tering and sorting operations, in addition to column family
access. Currently, NoSE’s cost module treats filter operations
as free. Since the query predicates are simple to evaluate
and the application can perform filtering “on the fly” as
the underlying record store returns results, filtering adds
little to no overhead to the time required to retrieve the
records. To account for the cost of application-side sorting,
NoSE adds a small constant sorting penalty to the estimated
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INSERT INTO Reservation SET ResEndDate = ?date

DELETE FROM Guest WHERE
Guest.GuestID = ?guestID

UPDATE Reservation FROM Reservation.Guest
SET Reservation.ResEndDate = ?
WHERE Guest.GuestID = ?guestID

CONNECT User(?userID) TO Reservations(?resID)

DISCONNECT User(?userID)
FROM Reservations(?resID)

Fig. 10. Example NoSE update statements

cost of the preceding column family in the plan. A more so-
phisticated model could adjust this penalty based on result
size, and could more accurately account for the overlap of
application-side sorting time with retrieval time.

6.1 Calibration
The actual cost of performing a plan’s get operations on a
column family depends on the performance characteristics
of the underlying extensible record store. Therefore, NoSE
learns the cost estimation function (T (n,w)) using an offline
calibration process.

The calibration process uses a synthetic database con-
sisting of set of column families with differing widths. We
performed a series of experiments, by choosing a column
family with a particular width w, performing n get requests
against that column family, and measuring the total time re-
quired for the requests. Each request retrieves all w columns
for a randomly chosen key. Thus, each such experiment
provides a measured execution time for a particular n and
w. We performed many of these experiments, and used
linear regression over the results to determine T (n,w).

7 UPDATES

The previous sections described how NoSE functions on
a read-only workload, but it is important to also consider
updates in the workload description. Updates implicitly
constrain the amount of denormalization present in the
generated schema. This effect results from the maintenance
required when the same attribute appears in multiple col-
umn families. Each column family containing an attribute
modified by an update is also modified, so repetition of
attributes increases update cost.

We first introduce extensions to our workload descrip-
tion to express updates. We then describe the update exe-
cution plans that NoSE generates and recommends to the
application developer. Finally, we describe modifications
required to the enumeration algorithm and the BIP used
by NoSE to support these updates.

7.1 Update Language
In order to support updates to the workload, we extend
our query language with additional statements which de-
scribe updates to data in terms of the conceptual model,
as illustrated in Figure 10. INSERT statements create new

Query
SELECT Room.RoomRate FROM
Room.Hotel.PointsOfInterest
WHERE Room.RoomFloor = ?floor
AND PointsOfInterest.POIID = ?poiID

Materialized View Column Family
[Room.RoomFloor][PointsOfInterest.POIID,

Hotel.HotelID, Room.RoomID]
[Room.RoomRate]

Update
UPDATE Room FROM Room.Reservations.Guest
SET RoomRate = ?rate1 WHERE
Guest.GuestID = ?id AND
Room.RoomRate = ?rate2

Fig. 11. An example NoSE query, materialized view, and update

entities and result in insertions to column families contain-
ing attributes from that entity. We assume that the INSERT
statement provides the primary key of each entity, but all
other attributes are optional. UPDATE statements modify
attributes, resulting in updates to any corresponding col-
umn families in the schema. DELETE statements remove
all data about deleted entities from any associated column
families. Both UPDATE and DELETE statements specify the
entities to modify using the same predicates available for
queries. Finally, CONNECT and DISCONNECT statements cre-
ate or destroy relationships between entities. These state-
ments simply specify the primary key of each entity and
the relationship to modify. We also allow the creation of
relationships on the insertion of a new entity by specifying
foreign keys of related entities.

7.2 Update Plans

As with queries, NoSE must provide an implementation
plan for each update, using the get, put and delete
operations supported by the extensible record store. Because
NoSE may denormalize attributes across multiple column
families, it must first determine which column families are
affected by the update, and then generate a plan for modi-
fying each of those column families to reflect the changes.

In general, a NoSE update statement might not contain
enough information to allow NoSE to construct an update
plan. To illustrate this problem, suppose that the schema rec-
ommended by NoSE includes the materialized view shown
in Figure 11. Suppose further that the workload includes the
UPDATE shown in the figure. Such an UPDATE may affect the
materialized view since the UPDATE changes the room rates
stored in the view. Thus, the recommended plan for this
update should include making changes to the materialized
view, using put or delete operations. However, a plan
cannot change room rates in this view without knowing the
RoomFloor, POIID, HotelID, and RoomID associated with
the room rates that need to change. This information is not
provided by the UPDATE.

To resolve this problem, NoSE update plans may in-
clude support queries, which obtain information that the plan
requires in order to perform the update. NoSE generates
such support queries automatically, as needed, as part of its
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function: Support
input : A modification u and a column family t
output : A set of support queries

// get required attributes
1 A← Required(t, u);
2 if |A| == 0 then return ∅;
3 if u.type ∈ {Insert,Connect,Disconnect} then
4 // split on relevant edges
5 E ← c | c ∈ u.connections ∧ c ∈ t.graph;
6 G = Split(t.graph,E);

// build a query for each subgraph
7 S ← ∅;
8 foreach subgraph g in G do
9 A′ ← {a | a ∈ A ∧ a.entity ∈ g};

10 w′ ← {c | c.attr.entity ∈ g};
11 if |A′|= 0 then continue;
12 S ← S

∪
{(u.from,A′, w′, [])};

13 return S;
14 else return {(u.from,A, u.where, [])};

Required produces the necessary fields for the update.
Split divides a graph in two on a given edge.

Alg. 3. Support query generation

SELECT Room.RoomID
FROM Room.Reservations.Guest
WHERE Guest.GuestID = ?id
AND Room.RoomRate = ?rate2

SELECT Room.RoomFloor, Room.Hotel.HotelID,
PointsOfInterest.POIID
FROM PointsOfInterest.Hotels.Rooms
WHERE Room.RoomID = ?id

Fig. 12. Support queries for the update shown in Figure 11

planning and optimization process. Given an update from
the workload and candidate column family, Algorithm 3
describes how NoSE generates the support queries neces-
sary to update the column family. If an update includes all
the information required to update a column family, then
Algorithm 3 does not generate any support queries.

7.2.1 Plans for UPDATE

We will use the materialized view and UPDATE from Fig-
ure 11 to illustrate how NoSE generates plans for updates.
For this UPDATE and view, NoSE will generate two support
queries. The first will return RoomIDs for the rooms whose
rates the UPDATE modifies. NoSE executes the second query
once for each RoomID returned by the first query. The
query returns the RoomFloor, HotelID, and POIIDs for
the given RoomID. Figure 12 illustrates these two support
queries. The results of this second query identify the rec-
ord keys (RoomFloors) and columns the UPDATE needs
to modify RoomRate in the materialized view. The plan
recommended by NoSE can then perform each update using
a put command against the materialized view.

In general, NoSE may require more than two support
queries to update a column family, although two is suffi-
cient in our example. The number of support queries that
NoSE generates depends on the structure of the materialized
view’s query graph, and on which entity NoSE is updating.
Furthermore, applying the updates to the column family
once the necessary records and columns have been identi-
fied is not always as simple as our example suggests. If an
UPDATE modifies an attribute used as part of the column
names or part of the record key in the view, then NoSE
cannot simply put the new value as it does in our previous
example. Instead, such updates delete the old record or
column and then insert a replacement.

7.2.2 Plans for DELETE
Plans for DELETE statements are similar to those for
UPDATEs, since both types of statement affect a single
type of entity in the conceptual model. Like an UPDATE,
a DELETE may require support queries to determine which
records to remove from an affected column family.

7.2.3 Plans for INSERT
If an INSERT statement does not include any CONNECT
clauses, then NoSE only needs to update column families
that contain only attributes of the newly inserted entity. In
this case, the INSERT supplies all the necessary attribute
values, and NoSE does not need to generate any support
queries.

If an INSERT does include CONNECT clauses, then NoSE
may need to update column families that include attributes
from multiple types of entities, including the type of the
inserted entity. Since the INSERT statement only specifies
values for the attributes of the inserted entity, NoSE will
construct one or more support queries to obtain the attribute
values for other entities that appear in the column family.
Furthermore, since the new entity’s attribute values may
be denormalized in the column family, the support queries
determine how many new records or columns to add to
the column family to reflect the addition of the new entity.
For example, an INSERT of a new POI, with a CONNECT
to a nearby hotel, may result in the addition of multiple
columns in multiple records of the materialized view shown
in Figure 11. Specifically, there will be a new column for
each room in the hotel linked to the new POI. Support
queries determine the RoomID, RoomFloor, and RoomRate
of these rooms, so that the INSERT plan can add the neces-
sary columns to the column family.

7.2.4 Plans for CONNECT and DISCONNECT

CONNECT and DISCONNECT may modify a column fam-
ily if the column family’s underlying query graph in-
cludes the edge that is being connected or disconnected.
CONNECT statements may cause new records or columns
to be inserted, and support queries obtain the necessary
attribute values, much as was done for INSERT. Similarly,
DISCONNECT may cause records or columns to be re-
moved, and support queries determine the affected records
and columns. When modeling the cost of CONNECT and
DISCONNECT, we treat these as insertions or deletions to
column families involving the relevant edge.
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function: UpdateEnumerate
input : A set of queries Q and updates U
output : A set of enumerated column families

// enumeration for workload queries
1 C ← {Enumerate(q) | q ∈ Q};
// enumeration for support queries

2 do twice
3 C ′ ← C ;
4 foreach update u in U do
5 foreach column family c in C ′ do
6 if Modifies?(u, c) then
7 foreach query q in Support(u, c) do
8 C ← C

∪
Enumerate(q);

9 return C
∪
Combine(C);

The Enumerate and Combine functions represent the can-
didate enumeration and candidate combination methods for
query-only workloads from Section 4.1. Support is the support
query generation algorithm (Algorithm 3). Modifies? tests
whether an update requires modifications to a given column
family.

Alg. 4. Column family enumeration for workloads with updates

minimize
∑
i

∑
j

fiCijδij +
∑
m

∑
n

fmC ′
mnδn

subject to
All constraints from Figure 8
Additional constraints per support query (see text)

Fig. 13. BIP modifications for updates

7.3 Column family enumeration for updates

Additional column families may be necessary to answer
support queries for updates in the workload. When there
are updates, the candidate enumerator uses the procedure
shown in Algorithm . This procedure extends the can-
didate enumeration procedure for query-only workloads,
which was originally described in Section 4.1. As shown
in Algorithm , NoSE performs candidate enumeration for
each query in the original workload, and twice for support
queries. This is because support queries generated on the
first iteration may cover new edges in the entity graph.
Candidate column families for these support queries may
themselves be affected by workload updates, resulting in
support queries for support queries.

Update support queries increase the size of the appli-
cation workload. For example, suppose that the original
workload includes a query Q with a query graph of length
k, and an update U that affects the first entity in Q’s
query graph. This will result in the addition of at least
k + 1 support queries to the workload. This is because
candidate enumeration for Q will generate k + 1 prefix
queries involving the updated entity. Each of those queries
will have a materialized view which is affected by U , and
for which a support query will be required.

7.4 BIP Modifications
To incorporate updates into our BIP, we first add constraints
for all support queries similarly to those for queries in the
original workload. In addition, we add constraints to ensure
that NoSE does not generate plans for support queries for a
candidate column family unless that column family is part
of the recommended design. The objective function receives
an additional term,

∑
m

∑
n fmC ′

mnδn, to represent the cost
of updating each column family, which is contingent on the
recommendation including this column family in the final
schema. C ′

mn is the cost of updating column family n for
update m (with frequency fm) given that the column family
appears in the final schema (δn). The cost of support queries
is also added using the same weight specified for the update
in the workload. Figure 13 shows the modified BIP.

After solving this modified BIP, NoSE plans each update
by first generating any necessary support query plans in
the same way as plans for queries in the original workload.
Each update plan then consists of a series of support query
plans along with insertion or deletion as necessary for the
update.

8 CASE STUDY

In this section, we present an analysis of a partial workload
extracted from EasyAntiCheat (EAC)1, a real-time cheat
detection engine for multiplayer games. Our goals are to
illustrate the challenges of NoSQL schema design and to
illustrate how NoSE works. In Section 9, we present a more
quantitative evaluation of NoSE.

EAC receives large volumes of player behaviour data
in real time. Their backend systems pull in this data and
analyze player behaviour to determine patterns indicative of
cheating. After hitting scalability limits with their relational
database infrastructure, EAC considered Cassandra as a
possible backend. Figure 14 shows a simplified version of
the conceptual model for the application. Game servers
have a number of player sessions with servers continually
collecting information on the state of players in each session.
The system stores data on millions of players and states,
hundreds of thousands of player sessions and thousands of
servers. Players generate new states at rates of up to several
hundred thousand per second.

For this case study, we focus on a subset of the work-
load. Figure 15 shows the most important queries in the
workload. The workload also includes updates (not shown
in Figure 15) including the insertion of new player states,
sessions, players, and servers. EAC estimates their workload
to be roughly 80% writes and 20% reads. The majority of
the writes come from the insertion of new states while
most queries are instances of Q1 and Q2. We have assumed
specific frequencies, fitting these constraints, for all queries
and updates. For simplicity, we assume these are the only
queries and updates performed by the system.

We used the EAC schema and workload as input to
NoSE, and Figure 16 shows the five column recommended
column families. The critical problem NoSE must resolve
for this workload is how to store player states, which are
voluminous and frequently inserted, and which are read by

1. www.easyanticheat.net
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Fig. 14. Entities modeled in EasyAntiCheat

both Q1 and Q2. Furthermore, one of these queries retrieves
states for a single player session, while the second retrieves
states for all players on a game server. NoSE addresses this
problem by recommending a single column family (CF1)
to support both queries, so that state information is not
denormalized and new states are only inserted in one place.
It chooses an organization for CF1 that can support both
Q1 and Q2, with the help of some application-side pro-
cessing. Specifically, the schema partitions states according
to the game server they originate from and sorts them
by timestamp. This allows the extensible record store to
directly support the timestamp range predicates in Q2, and
allows the application to avoid sorting by retrieving states
in timestamp order. NoSE’s recommended plan for Q1 is a
single get from CF1 followed by application-side filtering
on PlayerID. Similarly, Q2’s plan is a single get followed
by filtering on IsAdmin. To support this filtering, NoSE has
denormalized players’ IsAdmin attributes into CF1 to avoid
the need for additional lookups to retrieve that information.

Column families CF2 (Q3) and CF3 (Q4 and Q5) provide
answers to the remaining queries, which are less frequent.
Column families CF4 and CF5 are examples of column fam-
ilies that provide answers to support queries for updates,
as discussed in Section 7. To insert a new player state from
a given session into CF1, the application must also know
the player and server associated with that session, as well
as the player’s IsAdmin value, since that information is
denormalized into CF1 to support queries. Thus, NoSE’s
plan for insertions of new player states is a get from CF4 to
obtain the necessary player and server information for the
new state’s session, followed by a put of a new record into
CF1. Similarly, when a new session in created, NoSE’s plan
first obtains the IsAdmin value for the session’s player from
CF5 before inserting the new session into CF4.

NoSE’s schema recommendations are sensitive to work-
load and database properties, such as the relative frequen-
cies of the various queries and updates and the entity
cardinalities. For example, CF1 may become a poor way to
support Q1 if the number of players per game server gets
too large. On the one hand, this sensitivity is a positive, as
it reflects the reality of the underlying NoSQL systems, and
it allows an application developer to explore the schema
design space using NoSE, by simply tweaking workload

parameters. On the other hand, it suggests an interesting
direction for future work, which is the recommendation of
schemas with performance that is robust across a range of
workload changes, though not necessarily optimal at any
point within the range.

9 EVALUATION

In this section we present an evaluation of NoSE, designed
to address two questions. First, does NoSE produce good
schemas (Section 9.1)? Second, how long does it take for
NoSE to generate schema recommendations (Section 9.2)?
Our implementation of NoSE is available on GitHub [21].

9.1 Schema Quality

To evaluate the schemas recommended by NoSE, we used
it to generate schema and plan recommendations for a
target application. We then implemented the recommended
schema in Cassandra along with the recommended appli-
cation plans. While executing the plans against Cassandra,
we measured their execution times. Similarly, we also im-
plemented and executed the same workload against two
baseline schemas for comparison.

Although extensible record stores like Cassandra are in
wide use, we are not aware of open-source applications or
benchmarks. One exception is YCSB [22], which is useful for
performance and scalability testing of NoSQL systems, but
offers no flexibility in schema design. Instead, we created a
target application by adapting RUBiS [23], a Web application
benchmark originally backed by a relational database which
simulates an online auction website.

To adapt RUBiS for Cassandra, we created a conceptual
model based on the entities managed by RUBiS. The re-
sulting model contains seven entity sets, with ten relation-
ships among them. Using this model, we generated a NoSE
workload description, with queries and updates weighted
according to the bidding workload defined by RUBiS. This
workload consists of one or more statements corresponding
to each SQL statement used in the original RUBiS workload.

The first schema we examine, the NoSE schema, was rec-
ommended by NoSE using no storage constraint. We chose
not to evaluate the effect of storage constraints since updates
(which we consider later) have a similar affect of reducing
the amount of denormalization in the resulting schema.
This results in a highly denormalized, workload-specific
schema, generally consistent with the rules of thumb for
NoSQL schema design discussed in Section 1. We compared
this to two baseline schemas. The first, which we refer to
as the Normalized schema, is a manually created schema
which is highly normalized. For each entity set, it includes
a column family for which the partition key is the primary
key of the entity and which stores all data associated with
the entity. The Normalized schema also includes column
families which serve as secondary indices for queries which
do not specify entity primary keys. These column families
use the attributes given in query predicates as the partition
keys and store the primary key of the corresponding entities.
A human designer who is familiar with Cassandra defined
the second baseline, which we refer to as the Expert schema,
using the same workload that was input to NoSE. The expert
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Q1 Get the latest state of a player
SELECT states.PosX, states.PosY, states.PosZ, states.ServerTimestamp FROM
Server.sessions.states WHERE Server.ServerID = ?
AND sessions.player.PlayerID = ? ORDER BY states.ServerTimestamp

Q2 Get the latest states for all players on a server
SELECT states.PosX, states.PosY, states.PosZ, states.ServerTimestamp,
sessions.player.PlayerID FROM Server.sessions.states WHERE
sessions.player.IsAdmin = 0 AND Server.ServerID = ? AND states.ServerTimestamp > ?
AND states.ServerTimestamp <= ? ORDER BY states.ServerTimestamp

Q3 Get information on an individual server
SELECT Server.ServerName, Server.ServerIP FROM Server WHERE Server.ServerID = ?

Q4 Check if a server exists
SELECT Server.ServerID FROM Server WHERE Server.ServerID = ?

Q5 Get sessions for a player
SELECT Session.SessionID FROM Session.player WHERE player.PlayerID = ?

Fig. 15. Important queries in the EasyAntiCheat workload

CF1 [Server.ServerID]
[PlayerState.ServerTimestamp,

Player.PlayerID,
PlayerState.StateID,
Session.SessionID][Player.IsAdmin,

PlayerState.PosX, PlayerState.PosY,
PlayerState.PosZ]

CF2 [Server.ServerID][][Server.ServerName,
Server.ServerIP]

CF3 [Player.PlayerID][Session.SessionID][]

CF4 [Session.SessionID][Player.PlayerID,
Server.ServerID, Player.IsAdmin][]

CF5 [Player.PlayerID][][Player.IsAdmin]

Fig. 16. Column families produced for the EasyAntiCheat workload

schema’s designer also defined an execution plan for each
query. The Normalized schema is 4.9GB on disk compared
to 6.7GB for the expert schema and 7.8GB for the schema
produced by NoSE. Details of each schema and execution
plan is provided in the online supplemental materials.

We implemented each schemas in Cassandra, and popu-
lated each with data for a RUBiS instance with 200,000 users.
Rather than building a custom application to target each
schema, we developed a client-side execution engine which
can interpret and execute the query plans specified in the
plan format used by NoSE. This engine executed the plans
created for all three schemas. Query and update plans for
the two baselines were manually developed, and the NoSE
schema uses plans recommended by NoSE.

We used two servers for each experiment, one to execute
the client-side query plans and one running an instance of

Cassandra 2.0.9. Each server has two six core Xeon E5-2620
processors operating at 2.10 GHz and 64 GB of memory.
A 7200 RPM SATA drive stored the Cassandra data direc-
tory. The experiments ran with all Cassandra-level caching
disabled, since we do not attempt to model the effects of
caching in our cost model. NoSE could incorporate a more
elaborate cost model which captures the effects of caching,
as its cost model is pluggable.

The RUBiS workload consists of sixteen types of
application-level requests, each implemented using one or
more queries or updates against the underlying database.
Figure 17 shows the mean response time for requests of
each type, for each of the schemas that we evaluated. Mean
response times for the different types ranged from 2.0–79.5
ms for the schema recommended by NoSE, 1.3–526.8 ms for
the Normalized schema, and 2.7–209.4 ms for the Expert
schema. The weighted overall average response times (over
all request types) were 8.4ms, 87.0ms, and 41.6ms for the
NoSE, Normalized, and Expert schemas, respectively. Thus,
NoSE’s schema results in speed-ups of 10.2× and 4.9×
relative to the two baselines. Performance for individual
requests using the NoSE schema was not better than that
of the baselines for all request types. However, overall
performance improves because NoSE’s cost-based optimizer
allows it to exploit workload information to provide good
performance for the most frequent operations (those on
the right in Figure 17). In particular, the NoSE schema
uses extensive denormalization to support fast execution of
frequent queries, at the expense of additional work during
(less frequent) updates.

In addition to the experiment shown in Figure 17, we
also experimented with variations of the RUBiS workload
that have different mixes of request frequencies. Figure 18
shows the results, for four different mixes arranged in order
of increasing write intensity. We also considered RUBiS’s
Browsing workload mix and two variations of the Bidding
mix with the relative frequency of update interactions in-
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Fig. 17. Response time of RUBiS request types using three different schemas. Request types are ordered from least frequent to most frequent.
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Fig. 18. Execution plan performance for different request mixes. 10×
and 100× refer to the Bidding workload with update request frequencies
increased by 10× and 100×.

creased by factors of 10 and 100 relative to the original
Bidding workload. The Browsing workload consists of 7
read-only interactions and the Bidding workload adds 9 in-
teractions involving updates. The total frequency is approx-
imately 23% update interactions for the Bidding workload.
For each mix, NoSE generated a schema and execution plans
specific to that mix, which we compared against the original
Expert and Normalized schemas. Note that we only expect
the Expert schema to perform well against the Bidding
workload used for its development.

NoSE is extremely effective on the Browsing mix, largely
because it is free to denormalize heavily, with no update
penalty. As the workload becomes more write intensive,
NoSE’s schema recommendations become more normal-
ized, and workload performance approaches that achieved
by the Normalized baseline. In the most update intensive
mix, NoSE’s schema performs slightly worse than the base-
line schemas. NoSE has no knowledge of the correlation
of queries in the input workload and cannot share the
results of support query execution. In contrast, the expert
schema does exploit this knowledge and is thus able to
avoid unnecessary queries.

9.2 Advisor Runtime
Running NoSE for the RUBiS workload takes approximately
3.3 minutes. To evaluate the advisor runtime for workloads
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Fig. 19. Advisor runtime for varying workload scale factors

larger than RUBiS, we generated random entity graphs and
queries to use as input to our tool. The entity graph gen-
eration uses the Watts-Strogatz random graph model [24].
After generating the graph, we randomly assign a direction
to each edge and create a foreign key at the head node.
We then add a random number of attributes to each entity
in the graph. Our generator uses a random walk through
the graph to identify the graph of each statement. For
any statements involving a WHERE clause, we randomly
generate predicates in the graph. Queries and updates select
or update randomly chosen attributes in the graph.

Figure 19 shows the results of a simple experiment in
which we started with a random workload having similar
properties to the RUBiS workload discussed in the previous
section. We then increased the size of the workload by mul-
tiplying the number of entities and statements by a constant
factor. The largest workload (4× scale factor) tested contains
120 queries, 12 updates, and 20 insertions over an entity
graph with 28 entities. The figure shows the time required
for NoSE to recommend a schema and a set of execution
plans as a function of this factor. We ran all experiments
using a machine with the same specifications as in the
previous section. The increase in runtime is a result of the
increased number column families enumerated, which also
increases the number of support queries NoSE considers.
This interaction increases non-linearly with the workload
size (e.g., increased numbers of queries and updates) since
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there are more ways that column families recommended
for queries interact with updates. There is likely room for
optimization in the NoSE code to significantly reduce the
runtime. For example, any heuristics which can exclude
column families from enumeration will reduce the runtime
at all further stages in the process.

10 RELATED WORK

Numerous tools are available for solving related design
problems in relational database systems. Many of these tools
select an optimized collection of indexes and materialized
views to support a given workload [9], [10], [11], [12],
[13], [14], [15], [16]. However, as noted in Section 2, there
are some significant differences between relational physical
schema design and schema design for NoSQL systems,
which NoSE addresses. Others focus on vertical partition-
ing of relations, either to recommend a set of covering
indexes [25] or to determine a physical representation for
the relations [26], [27]. There are also tools for automating
relational partitioning and layout across servers [11], [28]
or storage devices [29], [30]. DBDesigner [31] determines
the physical representations (called projections) of tables for
the Vertica [26] column store, based on an input workload.
However, DBDesigner recommends a single projection at
each iteration which may not produce a globally optimal
solution. In addition, DBDesigner does not explicitly con-
sider the effect of updates but instead relies on heuristics to
limit the number of projections.

Typically, relational physical design involves the iden-
tification of candidate physical structures, followed by the
selection of a good subset of these candidates. NoSE uses
the same general approach. Some relational design tools,
including CoPhy [14], [16], CORADD [15], and a physical
design technique for C-Store [27] have formulated the task
of choosing a good set of candidates as a BIP. As noted
in Section 5, Papadomanolakis and Ailamaki [14] presented
a simple formulation of the problem as a binary integer
program. CoPhy [16], an extension of this work, adds op-
timizations to reduce calls to the relational query optimizer.
As in our work, their approach exploits the decomposition
of queries into components and analyzes these components
independently. CoPhy also includes a rich set of constraints
which may be useful as extensions to NoSE.

Our approach to the schema design problem for exten-
sible record stores owes an intellectual debt to GMAP [32],
which is a technique for improving the physical data inde-
pendence of relational database systems. In GMAP, the au-
thors describe both application queries and physical struc-
tures using a conceptual entity-relationship model. GMAP
associates one or more physical structures with each query
which can provide an answer to the query. The authors
use this approach out of a desire to provide a more thor-
ough form of physical data independence. In our case, we
adopt a similar approach out of necessity, as the extensible
record stores we target do not implement separate logical
and physical schemas. However, in GMAP, the primary
algorithmic task is to map each query to a given set of
physical structures. In contrast, our task is to choose a set of
physical structures to handle a given workload, in addition

to specifying which physical structures provide an answer
to each query.

Others have also proposed writing queries directly
against a conceptual model. For example, ERQL [33], is a
conceptual query language over enhanced ER diagrams.
It defines path expressions referring to a series of entities
or relationships. Our query model is somewhat more re-
strictive as we disallow self references. Queries over our
conceptual model are also similar to path expressions in
object databases, and the physical structures our technique
recommends are similar to the nested indexes and path
indexes described by Bertino and Kim [34].

Vajk et al. [35] discuss schema design in a setting similar
to ours. Their approach, like ours, starts with a conceptual
model with queries expressed in the UML Object Constraint
Language. They sketch an algorithm that appears to involve
the use of foreign key constraints in the conceptual model
to exhaustively enumerate candidate denormalizations. An
unspecified technique is then used to make a cost-based
selection of candidates. Although this approach is similar
to ours, it is difficult to make specific comparisons be-
cause the schema design approach is only sketched. Rule-
based approaches also exist for adapting relational [36]
and OLAP [37] schemas for NoSQL databases. However,
these approaches are workload agnostic and do not nec-
essarily produce schemas which can efficiently implement
any particular workload. Li [36] suggests a workload-aware
approach such as the one we take with NoSE as future work.

11 CONCLUSION

Schema design for NoSQL databases is a complex problem
with additional challenges as compared to the analogous
problem for relational databases. We have developed a
workload-driven approach for schema design for extensible
record stores, which is able to effectively explore trade-
offs in the design space. Our approach implicitly captures
best practices in NoSQL schema design without relying
on general design rules-of-thumb, and is thereby able to
generate effective NoSQL schema designs. Our approach
also allows applications to explicitly control the tradeoff
between normalization and query performance by varying
a space constraint.

Currently, NoSE only targets Cassandra. However, we
believe that with minimal effort, the same approach could
apply to other extensible record stores, such as HBase. We
also intend to explore the use of a similar model on data
stores with different data models, such as key-value stores
and document stores. Applying our approach to similar data
stores may only require changing the cost model and the
physical representation of column families. However, we
imagine NoSE may require more significant changes to fully
exploit the capabilities of different data models.
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