
ReSpark: Automatic Caching for Iterative
Applications in Apache Spark

Michael J. Mior
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
mmior@cs.rit.edu

Kenneth Salem
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada
kmsalem@uwaterloo.ca

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/BigData50022.2020.9377866

Abstract—Apache Spark is a distributed computing framework
used for big data processing. A common pattern in many Spark
applications is to iteratively evolve a dataset until reaching some
user-specified convergence condition. Unfortunately, some aspects
of Spark’s execution model make it difficult for developers who
are not familiar with the implementation-level details of Spark
to write efficient iterative programs.

Since results are constructed iteratively and results from previ-
ous iterations may be used multiple times, effective use of caching
is necessary to avoid recomputing intermediate results. Currently,
developers of Spark applications must manually indicate which
intermediate results should be cached. We present a method for
using metadata already captured by Spark to automate caching
decisions for many Spark programs. We show how this allows
Spark applications to benefit from caching without the need for
manual caching annotations.

Index Terms—Spark, caching, iteration

I. MOTIVATION

Apache Spark [1] is a widely used framework for big data
analytics, machine learning, and many other domains. Spark has
an advantage over previous solutions like MapReduce [2] in that
intermediate results can be held in memory without the need to
write results to disk at each stage. This makes Spark well-suited
for iterative applications. In these applications, it is common
for intermediate results to be reused in several iterations.
However, Spark does not automatically cache intermediate
results. To guide caching, application programmers must
include explicit annotations in the their programs to tell Spark
which intermediate results to add to or remove from its cache.
Unfortunately, Spark’s caching annotations can be surprisingly
difficult to use effectively. Although the annotations are simple,
they can sometimes interact with Spark’s lazy job execution
semantics in unexpected ways. We illustrate some of these
problems in Section III.

In this paper, we present ReSpark. The goal of ReSpark is to
to eliminate the need for explicit caching annotations in Spark
applications. Instead, ReSpark automatically determines what
should be added to and removed from the cache on behalf of
the program. Our focus is specifically on iterative applications
since iteration is the primary motivator for caching in Spark.

We take a learning approach to automating caching decisions.
As an application runs, ReSpark observes how intermediate re-
sults are used by the application. It then uses these observations

to predict how subsequent intermediate results will be used, and
bases its caching recommendations on those predictions. Unlike
prior work, these observations and adjustments are made during
a single run of the application, without requiring prior training
data. We tested the performance of ReSpark using a suite of
Spark benchmarks and found that the performance of many
applications, using our enhancements and with no manual
caching annotations, was comparable to that of manually
annotated versions.

Our work makes the following contributions:
• In Section IV, we introduce ReSpark, a series of modifica-

tions to the Spark runtime which automate the selection
of intermediate results to persist.

• Section IV-C presents lazy unpersist, an alternative to the
default mechanism of unpersisting cache entries in Spark
which ensures that cached results are fully utilized before
they are removed from the cache.

• Finally, in Section V we analyze the performance of our
techniques and demonstrate that explicit persist/unpersist
annotations by Spark application developers are not
required to achieve good performance.

II. SPARK BACKGROUND

In the following section, we discuss the challenges faced
by developers making use of Spark for iterative computation.
Section II-A describes the types of applications we are aiming
to optimize and the problems developers face with their
implementation. In Section II-B we show how this problem is
partially addressed via caching of intermediate results, but we
also show how simple approaches to caching fall short.

A. Iterative Computation in Spark

A simple example of a Spark application using iteration
is given in Figure 1a. The program consists of a series of
lazy map transformations followed by a count action (which
forces evaluation). Since Spark uses lazy evaluation and there
are no actions within the loop, Spark simply constructs a
directed acyclic graph (DAG) of these transformations while the
loop runs. Each transformation consumes resilient distributed
datasets (RDDs) produced by previous transformations, and
produces a new RDD for consumption downstream. As the
application iterates, Spark simply records metadata about how



to compute the RDD generated by transformations in one
iteration from the RDDs generated during the previous iteration.
This metadata defines the lineage of the RDD. An action such
as the count on the last line of the program schedules a job
which immediately executes all of the pending transformations.

Since the example program consists of a single action and
no aggregation, all transformations are executed as a single job,
resulting in consistently fast execution as shown in Figure 2,
Variant V1. All benchmarks in this figure were executed on
a data set of 100 million randomly generated points using
the same hardware described later in Section V. Spark was
configured with 4 executors each with 16GB of memory and
an additional 32GB of memory allocated to the driver program.

1 // data refers to a Spark RDD
2 for (i <- 1 to iterations) {
3 data = data.map(...).filter(...)}
4 data.count()

(a) Variant V1: Simple Spark application

1 // data refers to a Spark RDD
2 for (i <- 1 to iterations) {
3 data = data.map(...).filter(...)
4 if (data.count() < limit) break }
5 data.count()

(b) Variant V2: With data-dependent termination

1 // data refers to a Spark RDD
2 for (i <- 1 to iterations) {
3 val oldData = data
4 data = data.map(...).filter(...)
5 data.persist()
6 if (data.count() < limit) break
7 oldData.unpersist() }
8 data.count()

(c) Variant V3: With data-dependent termination and caching

Fig. 1: Variants of an iterative Spark application

Unfortunately, small changes to the application code can
result in a significant degradation of application performance.
Consider Figure 1b, which shows a variant of the sample
program from Figure 1a. In this version, the developer wants a
data-defined termination condition: stopping when the size of
the RDD drops below a specified value. An action (count) is
now executed for each iteration. Because of this, execution of
the application will result in one Spark job per iteration, rather
than a single job as was the case for variant V1. Computation of
the current count for the data RDD will be scheduled on each
iteration of the loop. In addition to the transformations no longer
being lazy, Spark will also reevaluate all the transformations
for the previous iteration since results are discarded after each
iteration.

The seemingly minor change from variant V1 to variant
V2 leads to substantial change in execution time as shown
in Figure 2. The result is quadratic runtime instead of the

Fig. 2: Runtime for the Spark application from Figure 1

linear runtime that would be achieved without the intervening
action. This can be resolved through the use of Spark’s caching
mechanisms, but this requires explicit programmer annotation.

B. Caching

Spark programmers are expected to explicitly indicate when
computed RDDs should be persisted. When writing a Spark
application, a developer can store a reference to any RDD
in a variable in the host programming language, such as the
variable data in our sample program. This enables datasets
constructed from the same set of transformations to be used
multiple times with other additional transformations appended.
By default, Spark does not attempt to reuse computed RDDs
even when their lineage is identical. A persistence annotation
in Spark specifies that the annotated RDD should be stored
for later reuse. When the RDD is first computed, it is placed
into an internal cache in either memory or disk as specified by
the programmer. If the same RDD is reused in a different job,
the executor running the job will check its local cache. If the
RDD was previously computed and has not been evicted, the
RDD will be read from the cache instead of being recomputed.

Thus, to improve variant V2, a developer could choose
to persist the results of each iteration as in Figure 1c. With
this explicit call to persist, results of each iteration will
be cached in memory. Therefore, when the next iteration is
computed, this data can be retrieved from the cache instead of
recomputing it. Information which is no longer required can be
removed from the cache via an explicit call to unpersist
(line 7 in Figure 1c). The addition of these persistence
annotations returns the application to linear runtime (with some
additional overhead required for the action to be computed in
each iteration compared to variant V1). The effect of enabling
caching in the sample program is shown in Figure 2.

III. THE PROBLEM

Although persist and unpersist annotations are im-
portant to the performance of iterative applications, they



1 var rankGraph = graph.joinVerts(...)
.map(...)

2 var iteration = 0
3 while (iteration < numIter) {
4 rankGraph.persist()
5 val updates = rankGraph.aggregate(...)
6 prevRankGraph = rankGraph
7 rankGraph = rankGraph.joinVerts(updates)

.persist()
// see the text

8 // rankGraph.foreachPartition(...)
9 prevRankGraph.unpersist() }

10 rankGraph.values.sum()

Fig. 3: Simplified Version of PageRank in Spark
Spark uses two RDDs for graphs; we treat them as one for simplicity.

can be difficult to apply correctly. For example, consider
Figure 3, which shows a simplified version of Spark’s PageRank
implementation. This code starts with a graph (rankGraph)
and iteratively refines it. On each iteration, the newly refined
graph is persisted (line 4) and the previous version of the graph
is unpersisted (line 9). PageRank’s iterative refinement pattern
is similar to that used by the application in Figure 1, and both
applications make similar use of persist and unpersist
annotations to control caching. However, while caching was
effective for the application in Figure 1c, it will not help at
all for the PageRank implementation in Figure 3!

In Figure 3, the programmer’s intention is clearly to persist
the new graph and unpersist the old graph on each iteration.
However, the persist and unpersist annotations will not
have the intended effect because, as described in Section II,
Spark transformations are executed lazily. That is, Spark does
not actually compute the nth version of the graph during the
nth iteration of the loop. Spark’s persist and unpersist
annotations, in contrast, only affect the metadata, and they
are applied eagerly as the application loop runs. Thus, on
each iteration in Figure 3, the current version of the graph is
flagged to be persisted, and then the flag is removed by the
unpersist annotation. When lazy evaluation finally occurs
(at line 10 in Figure 3), none of the graph versions have
persistence flags, and Spark does no caching at all!

To recognize this problem, a Spark programmer must
understand the non-intuitive interplay between Spark’s per-
sistence annotations and lazy evaluation. Solving the prob-
lem is also non-trivial. In the case of Spark’s PageRank
implementation, per-iteration caching is achieved by adding
a gratuitous Spark action to each loop iteration to force
Spark to eagerly evaluate each new graph version. (This is
accomplished by the foreachPartition action which we
have shown in a comment at line 8 of Figure 3.) A side effect
of this materialization is that the persist and unpersist
annotations now have their intended behavior.

Figure 4 shows the performance of Spark’s PageRank imple-
mentation with and without the eager materialization induced
by the foreachPartition action. (The full experimental
setup is described in Section V.) Without eager materialization,

Fig. 4: PageRank runtime with/without eager materialization

runtime grows quadratically with the number of iterations, as
shown by the “No Materialize” curve in Figure 4. This is
because caching is ineffective, forcing Spark to recalculate
previous versions of the graph on each iteration. With the
action, runtime grows linearly (curve “Materialize”), since
each graph version is cached until the next version has been
calculated.

In summary, caching is critical for the performance of
iterative Spark applications. However, Spark programmers must
manually annotate their applications to guide caching. To make
effective use of such annotations, the program must be able
to recognize reuse of Spark RDDs by the application, and
must mark reused RDDs for caching after they are defined by
the application but before they are actually evaluated by the
Spark runtime. As application complexity increases, identifying
and tracking potential reuse becomes more challenging. Even
if the programmer can identify reused RDDs, annotating the
application for effective caching is challenging because of
the complex interplay between application execution, caching,
and lazy evaluation in Spark. With ReSpark, we avoid these
problems by eliminating the need for manual annotation.

IV. RESPARK

ReSpark works by observing the application as it runs, and
generating persistence annotations on the fly. That is, it learns
how to cache RDDs by watching how they are defined and
used. ReSpark also learns when to unpersist persisted RDDs.
Its approach is general enough to accommodate applications
with complex iteration patterns, such as nested loops. A
ReSpark program should outperform an alternative without
caching, while being simpler to write than a program with
manual caching annotations. ReSpark is specifically designed to
improve the performance of iterative applications. No changes
to the Spark programming interface are required to use ReSpark
except that Spark programmers can avoid the use of explicit
persist and unpersist annotations.



1 var next = sc.parallelize(1 to 100)
.map(i => (i,i))

2 var prev: RDD[(Int, Int)] = null
3 var n = 0
4 while (next.sum() < MIN_SUM) {
5 val updates = next.map({ case (i, j) =>

(i, j + 1) })
6 prev = next
7 next = prev.join(updates)
8 .map({ case (i, (j, k)) =>

(i, j + k) })
9 }

10 next.count()

Fig. 5: A Spark program benefiting from caching with ReSpark

Call Site ↓ 1 Job 1 Job 2

Line 5 2 5

Line 7 3 6

Line 8 4 7

Iteration→ 1 2

Fig. 6: Partial execution of the program in Figure 5

A. Predicting Reuse: An Example

Consider the example in Figure 5 which uses iteration
to repeatedly generate new RDDs in a loop. In this case,
the program sums up values in the RDD to decide when to
terminate. This program will generate one Spark job for each
iteration of the loop. The RDDs generated in the first job are
shown in Figure 6 (consider only those to the left of the line
indicating the job boundary). ReSpark makes use of the lineage
information already maintained by Spark to predict reuse. As
new RDDs are defined, Spark records their parents. An arrow
from an RDD 1 to another RDD 2 indicates that RDD 2 is
computed based on data from RDD 1 (i.e., 1 is a parent of 2).
Until an action (e.g. count) occurs in the application, Spark
simply continues to build up this metadata. Any RDD which
is used more than once is a candidate for caching.

ReSpark must make caching decisions for RDDs computed
by a job before the job is executed since caching directives are
metadata attached to RDDs computed by a job when the job
is submitted. Using only metadata from the first job, ReSpark
would choose to cache RDD 1 since it is used twice (for
computing RDDs 2 and 3). However, other RDDs computed
by this job may be reused in a job later in the application
program that we currently have no information on. Since job
execution starts whenever the Spark runtime encounters an
action, we must decide if RDDs that will be generated during

the execution of that job should be cached. When executing
job 1 for iteration 1, we can see reuse of RDD 1, but we have
no knowledge of the future reuse of RDD 4. As shown in
Figure 6, we can see that once job 2 has executed, RDD 4
will have been used twice (for defining RDDs 5 and 6). We
refer to this problem of predicting which RDDs will be reused
in future jobs as the job horizon problem since reuse beyond
the current job is not visible.

Consider what happens when we prepare to execute subse-
quent jobs. Since the dependency structure of RDDs is tied
to the structure of the application program, we may decide to
infer that RDDs 4 and 7 will see similar reuse patterns since
they were created at the same place in the application code.
Predicting reuse in this way is core to ReSpark’s automation
of caching.

B. Predicting Reuse in ReSpark

One key piece of information (already maintained by Spark)
useful for analyzing reuse is the call site of each RDD. The
call site is simply a stack trace of the program, which uniquely
identifies the point in the application where the RDD is defined.
RDDs may be used at a call site in one of two ways: as input
to a transformation to produce another RDD or in an action to
compute a value from the RDD. By counting transformations
and actions for an RDD, we can determine when reuse occurs
for RDDs with a given call site.

We formulate our solution for making appropriate caching
decisions in the presence of the job horizon problem as a
prediction task. Specifically, we enable Spark to learn whether
an RDD is expected to be reused given past behaviour. Since
we have call site information for each RDD, we use this to
predict whether new RDDs with the same call site will be
reused and to decide whether they should be persisted. When
a new RDD is defined, we need to decide if the new RDD
should be persisted. Call site information is useful since we
expect that RDDs defined at the same call site will experience
similar reuse patterns. This is a key insight used by ReSpark.

In ReSpark, we use a simple approach to solving the problem
of predicting the number of times each RDDs will be used.
For each call site, we maintain a history of the RDDs created
at that call site. For each of these RDDs, we track every call
site where the RDD is used. We can predict the number of
times future RDDs created at the same call site will be used
and decide if they should be cached. That is, we expect that
the number of uses of an RDD created at a particular call site
is predictive of the number of uses of future RDDs defined
at the same call site. Whenever the predicted number of uses
of an RDD is greater than one, ReSpark will choose to cache
the RDD. The expected number of uses also enables ReSpark
to determine when an RDD is no longer needed and can be
unpersisted (removed from the cache) as we discuss in the
next section. The full set of algorithms used to update usage
information is given in Figure 7.

ReSpark assumes that the reuse of the first RDD created at a
call site is predictive of the reuse of all future RDDs created at
the same call site. This is currently a limitation of ReSpark that



Procedure OnRDDDefinition(rdd)
Add rdd to the list of RDDs created at rdd.callSite
// Record each dependency of the new RDD
foreach dependency dep of rdd do

Add the rdd.callSite to the list of uses of dep
if The first RDD created at dep.callSite has a use

count greater than 1 then Persist dep;
if call site of rdd has a use count greater than 1 then

Persist rdd
Procedure OnRDDAction(rdd)

Add the call site of the action to the list of uses ofrdd

Fig. 7: Algorithms for tracking RDD usage

we intend to address in future work. However, this assumption
is sufficient for many useful algorithms which we analyze in
Section V. To enable ReSpark to work with applications with
changing reuse patterns, we expect to be able to use the same
usage information we are currently collecting in concert with
more advanced machine learning techniques to make more
complex predictions. If ReSpark were to underestimate reuse,
it is possible that cached data will still be available since it is
lazily removed from the cache.

For an example of our simple approach to reuse tracking,
in Figure 6 job 2 has executed and we see that RDD 4, the
first RDD created on line 8, was used twice. The first use in
defining RDD 5 on line 5 and again in defining RDD 6 on
line 7. Since the expected number of uses is greater than one,
ReSpark will then choose to cache any future RDDs created
on line 8 of the program. When preparing future jobs, ReSpark
is able to correctly predict that the RDD which will be created
on Line 8, will be reused when the next job executes.

Since the focus of ReSpark is on iterative applications, one
might wonder why we do not make use of information on
iteration (i.e. the structure of loops in the application program).
In fact, an early implementation of ReSpark did provide explicit
information on iteration to the Spark runtime. However, the
major drawback of this approach is that it requires annotating
Spark programs with information about loops since Spark
is oblivious to iteration, which occurs inside the application
program. This could potentially be remedied via static analysis
of Spark applications to identify iterations. Even so, we found
that the performance of ReSpark did not benefit from this
additional information so we have chosen an approach which
works easily on unmodified applications.

C. Unpersisting RDDs

In addition to automatically determining what to persist,
ReSpark also automatically determines when to unpersist RDDs
it has previously persisted. ReSpark unpersists RDDs lazily,
during evaluation, once RDDs have been used the predicted
number of times. This avoids polluting the cache with RDDs
which are not expected to be used in the future. To do this,
we make use of metadata, reuseCount which ReSpark
associates with each RDD it decides to automatically persist.
The reuseCount indicates how many times an RDD is
expected to be reused as predicted in Section IV-B.

ReSpark also sets a flag, unpersistPending, on each
RDD it decides to automatically persist so that it does
not unpersist RDDs which were explicitly persisted by the
application. To decide when an RDD should be unpersisted, we
simply need to track when each use occurs and decrement the
reuseCount. When the reuseCount of an RDD reaches
zero, then it can be unpersisted since we do not expect future
use, enabling the space in the cache used by the RDD to be
freed immediately. This approach avoids explicit materialization
as discussed in Section II-B since we ensure the Spark runtime
does not unpersist an RDD when it is expected to be reused.
Note that if the RDD is not used the predicted number of times
(i.e. the reuse count was overestimated), it will still eventually
age out of Spark’s LRU cache.

The decision as to when an RDD should be unpersisted
is made using the expected usage information collected as
described in the previous section. What remains is to count
when each of these expected uses occurs. To track each use of
an RDD, ReSpark ties each usage to an execution of a Spark
stage. Stages are created by the Spark scheduler when an
action executes to compute the result of actions or repartition
data for transformations such as aggregation or joins. The
algorithm used by ReSpark for discovering which RDDs are
used is executed when each stage is scheduled (e.g., when
an action occurs in the application program). ReSpark then
traverses the lineage of the RDD computed by that stage.
During this traversal, ReSpark records RDDs marked with
the unpersistPending flag, which indicates RDDs that
ReSpark has previously persisted. These are RDDs which
should be unpersisted once their reuseCount reaches zero.

The goal of this traversal algorithm is to discover which
of these RDDs are used by each stage Spark has scheduled.
ReSpark maintains a simple data structure, waitingStages,
during this traveral. It indicates which stages make use of an
RDD. These are the stages which must complete for the RDD
to be unpersisted. Details of the algorithm used to populate
this structure given in Figure 8. Note that the highlighted line
is an optimization which we describe later.

Once the waitingStages structure has been populated
by the algorithm in Figure 8, we can use this information
during job execution to decide when RDDs can be unpersisted.
As each stage completes, the algorithm checks to see if there
are any RDDs that may be ready to be unpersisted. If the
stage which just completed corresponds to the last use of an
RDD, then that RDD is unpersisted. This approach ensures
that RDDs are persisted when requested and allows them to
be unpersisted as soon when they are no longer needed. The
full algorithm is shown in Figure 9.

Some intermediate stages, which Spark refers to as shuffle
stages, require sending data between nodes in a Spark cluster.
Shuffle stages can be expensive to recompute. To mitigate this
cost, Spark stores the output of shuffle stages to disk in case it
is used again. When an RDD which is the result of a shuffle
is reused, we only need to wait for the shuffle to complete
since Spark can use the shuffle output stored on disk instead
of recomputing the RDD. Exploiting this behaviour of shuffle



Procedure OnResultStageScheduled(finalStage)
waiting ← [(finalStage.rdd,
finalStage.id)]

Procedure visit(rdd, stageId)
// Record RDD to be unpersisted later
if rdd.unpersistPending then

Add stageId to waitingStages for rdd

// Mark ancestors to be visited
foreach dependency dep of rdd do

if dep is a shuffle dependency then
Add (dep, dep.stageId) to waiting

else
Add (dep, stageId) to waiting

// Visit stages following RDD lineage
visited ← ∅
do

Pop (rdd, stageId) from waiting
if (rdd, stageId) /∈ visited then

visit(rdd, stageId)
Add (rdd, stageId) to visited

until waiting is empty;

Fig. 8: Finding stages to unpersist an RDD

Procedure OnStageFinish(stage)
// Check for RDDs to unpersist
foreach rdd in waitingStages for stage do

Remove stage from the list of stages for rdd in
waitingStages

Decrement reuseCount for rdd
if waitingStages for rdd is empty and
reuseCount is zero then Unpersist rdd;

Fig. 9: Check for RDDs which can be unpersisted

stages is an optimization which allows ReSpark to unpersist
data earlier since it can be provided by Spark’s shuffle output
on disk. We highlight this optimization in Figure 8 which
simply consists of waiting for the stage preceding a shuffle to
complete instead of the stage itself.

We can use the information collected in the
waitingStages structure for one final optimization.
Spark already uses delay scheduling [3] to postpone the
execution of tasks in exchange for increased locality. This
includes attempting to schedule tasks where data has been
cached. However, this locality-based scheduling does not take
into account tasks which are in progress and have not yet
been cached. We use the information on pending tasks to
extend this locality-based scheduling so Spark also attempts
to colocate a new task with a running task which is already
computing data that the new task requires. This locality-based
scheduling increases the chances that any data placed in the
cache by the running task will be available to the new task.

V. EVALUATION

To evaluate the performance of ReSpark, we analyzed six
iterative Spark applications, as summarized in Table I. The first
four applications (shortest paths, PageRank, K-means, and SCC)
are from version 2.0 of the Spark-Bench [4] benchmarking

Application Data-
dependent
termination

Loop
Nesting

Materialization

Shortest paths 3

PageRank 3

K-means 3

SCC 3 3

LOPQ 3

BigITQ

TABLE I: Summary of evaluated Spark applications

suite. These specific algorithms were selected since they
comprise all iterative applications within Spark-Bench 2.0.
These applications were created to test implementations of
iterative algorithms that are implemented in the MLlib and
GraphX machine learning and graph processing libraries that
are distributed with Spark. We expect these algorithms to be
highly optimized since they are implemented by the same team
of developers working on the core of Spark. In particular, the
library implementations of these algorithms all make use of
developer-specified RDD caching and, in some cases, RDD
materialization (see Table I). The input data used for these
benchmarks was produced by the random data generation
facilities of Spark-Bench.

In addition to the Spark-Bench applications, we considered
two other iterative applications for which we were able to obtain
test data. The first, called LOPQ, implements locally optimized
product quantization [5], an approximate nearest neighbour
algorithm. LOPQ is a Spark implementation of the algorithm
from developers at Yahoo! [6] LOPQ trains multiple k-means
models on different splits of the data. The second, called
BigITQ [7], is a Spark implementation of iterative quantization
(ITQ) [8], an algorithm for producing similarity-preserving
binary codes for large image collections. The ITQ algorithm
constructs a matrix representing these codes which is iteratively
updated to produce the final result. We ran this algorithm using
the CIFAR-10 [9] dataset. Both BigITQ and LOPQ include
developer-specified Spark caching annotations.

The primary goal of our evaluation is to compare the
effectiveness of ReSpark’s automatic caching annotations with
that of developer-specified caching. To do this, we compare the
performance of manually and automatically annotated versions
of the applications. Ideally, we hope that the automatically
annotated versions will perform as well as the manually
annotated versions, indicating that ReSpark can eliminate the
need for manual annotation, with no sacrifice in application
performance.

To this end, we report the performance of each application
executed three different ways, which we refer to as ReSpark,
Default, and NoCache. For ReSpark execution, we remove
all developer-added caching annotations and materialization
from the application. We then run the resulting application
using ReSpark. For Default execution, we ran the unmodified



applications, including all developer-specified caching anno-
tations and materialization, on unmodified Spark. This serves
as our primary baseline. For NoCache execution, we ran the
original application with caching disabled to show the impact
of caching on application execution times.

All of our experiments were run on a Spark cluster using
the Hadoop distributed file system (HDFS) and Hadoop’s
YARN resource manager. All experiments were performed
with a pre-release of Spark 2.4.0 using YARN running on
Hadoop 2.7.3. Each server has two six core Xeon E5-2620
processors operating at 2.10 GHz and 64 GB of memory. For
the experiments involving the SparkBench application, we
used three servers for each experiment. One server ran the
Spark master, the HDFS NameNode, and the YARN resource
manager. The other two hosted HDFS data nodes, YARN node
managers and Spark executors. Both the Spark driver and each
of two Spark executors were allocated 4GB of memory. For
the experiments involving BigITQ and LOPQ, for which we
had larger test data sets, we used a similar configuration with
four Spark execution nodes. Our primary performance metric
in each experiment is the total runtime of the test application.
All figures report the average of ten runs along with the 95%
confidence interval. (Note that in many cases, the confidence
interval is too small to be represented in the graph.)

In the remainder of this section, we present the results of
our evaluation for each of the test applications in turn. To
facilitate our analyses of the results, we present high-level
summaries of the iterative structure of each application. These
summaries take the form of graphs, such as the one shown in
Figure 10. Each small labelled box represents the call site of
an RDD in the application. The arrows between these boxes
represents data dependencies between RDDs. That is, if an
edge exists from RDD A to RDD B, RDD B is created based
on some transformation of RDD A. RDDs can also depend
on other RDDs created at the same call site on a previous
iteration. These RDDs are represented by a similarly-named
RDD surrounded by a dotted box. For example, in Figure 10,
each instance of the Centers RDD is created from the previous
instance of Centers as well as the Input RDD.

A. K-means clustering

K-means in Spark is part of the MLlib machine learning
package and uses the parallel k-means clustering algorithm [10].
After initializing cluster centers, the algorithm iterates over
the dataset moving each cluster center closer to its mean.
Cluster centers are then recomputed until they converge or a
maximum number of iterations (5) is reached. The structure
of the algorithm is shown in Figure 10. The majority of the
runtime in k-means clustering is iterating over the input to refine
the cluster centers. Results of the baseline without caching in
Figure 11 show that caching is critical for good performance.
ReSpark is able to identify that the input to the algorithm
should be cached and achieves nearly identical performance to
the original program with manual persistence annotations.

Input Costs Initial Centers

Costs′Chosen

Initial Centers′Loop Centers

OutputCenters′

Loop

Fig. 10: Spark’s K-means implementation

Fig. 11: K-means clustering benchmark results

B. Shortest paths

The shortest paths algorithm is part of Spark’s GraphX
graph processing library, which uses an approach similar
to the Pregel [11] graph processing system. Spark’s Pregel
implementation simply iterates sending messages between
vertices which update their local data. Only vertices which
receive messages are permitted to send messages in subsequent
rounds. Execution stops when all vertices have stopped sending
messages. The shortest paths algorithm in Spark is formulated
as a vertex program using Pregel. A simple overview of the
structure of the Pregel implementation in Spark used by the

Joined

GraphInput Messages

Graph′ Messages′

Output

Loop

Fig. 12: Spark’s Pregel implementation



Fig. 13: Shortest paths benchmark results

shortest paths algorithm is given in Figure 12
Spark-Bench uses Spark’s shortest paths algorithm to search

for the shortest path between two vertices of a graph with
log-normal degree distribution (µ = 4.0 and σ = 1.3 [11].
The shortest paths algorithm is implemented using the Pregel
model by maintaining the length of the shortest path to
the destination vertex. Each vertex sends a message to its
neighbours containing this length with one step added for the
extra vertex. Vertices will then update their local data to contain
the minimum of the current length and the lengths received
in these messages. Eventually these distances will converge
so the source vertex contains the length of the shortest path
to the destination. Without caching, shortest paths can take
several hours to run as the number of vertices in the graph
grows. With ReSpark or manual caching, execution time is
reduced to a few minutes, as shown in Figure 13.

C. Strongly Connected Components (SCC)

The strongly connected components (SCC) algorithm aims
to partition a graph into components in which there exists a
path between every pair of vertices. Spark’s implementation
first assigns a unique component ID to each vertex and tags
each vertex as pending. The algorithm then finds all vertices
without outgoing or incoming edges marked as final and the
component IDs are assigned in the final graph. The second stage
uses Spark’s Pregel implementation to collect the minimum
component ID from all remaining adjacent vertices. Finally, the
third stage again uses Pregel to mark new vertices as final if
there is a neighbour with the same colour which is marked as
final. This continues until no unfinalized vertices remain or the
configured number of iterations is complete. The structure of
the algorithm including its connection with Pregel is shown in
Figure 14. In addition to the caching which takes place inside
Spark’s Pregel implementation, RDDs generated at the Graph
call site are also persisted. After materializing this graph, the
graph from the previous iteration unpersisted.

We ran the SCC benchmark with its default of 3 iterations.
The runtime of ReSpark again closely mirrors that of the
original Spark-Bench implementation. Again, we do not include
results without caching since runtime exceeds several hours.

Graph

Input

Work Graph

Out edges Joined

Graph′ Final Vertices

Subgraph

Pregel Pregel Work Graph′

Output

Outer Loop

Inner Loop

Fig. 14: Spark’s SCC implementation (see Figure 12 for the
Pregel implementation)

Fig. 15: SCC benchmark results

D. PageRank

Spark’s GraphX library also includes an implementation
of the PageRank [12] algorithm. PageRank uses edges in a
graph to calculate a rank for each node based on the incoming
edges. Spark’s implementation repeatedly sends messages to
adjacent vertices and then uses these messages to update the
rank for each node. This algorithm runs a fixed number of
iterations before terminating. An overview of the algorithm
structure is given in Figure 16. Spark simply computes updates
to the rank on each iteration and joins these updates with the
original graph. To optimize this computation, GraphX in Spark
persist RDDs generated during each iteration. The graph with
the current rank of each node is then materialized the before
the previous iteration is unpersisted to prevent the issues with
unpersist discussed in Section IV-C.

We evaluate PageRank on graphs with a varying number



Rank GraphInput

Rank Updates Rank Graph′ Output

Loop

Fig. 16: Spark’s PageRank implementation

Fig. 17: PageRank benchmark results

of vertices generated as for the graphs for the shortest paths
tests above. As shown in Figure 17, ReSpark again has similar
performance to the original Spark implementation, without the
need for explicit persistence annotations or materialization.

E. Approximate nearest neighbour

Nearest neighbour algorithms aim to identify a vector, from
a given vector set, that is closest to a query vector. The relevant
code is shown in Figure 18. We apply our iterative optimizations
to the underlying k-means model as well as the iteration over
the data splits. In addition, we remove all the provided caching
annotations (lines 1, 4, and 6 in Figure 18). Table II shows
the performance of ReSpark on the SIFT1M (2.3GB) and
GIST1M (11.8GB) datasets [13]. ReSpark is able to identify
the dataset which needs to be persisted on line 4, and results in
a 16% slowdown on the larger dataset compared to the original
program with manual persistence allocations. In contrast, the
version of the program with the manual persistence annotation
disabled is 26% slower on the same dataset. In this case,
ReSpark was able to obtain approximately 62% of the benefit
of caching without any manual persistence annotations.

Much of this overhead is due to changes in Spark’s Python
API (PySpark) which introduces the concept of a pipelined
RDD, which combines multiple Python operations into a single
RDD to minimize the communication overhead between the
Scala backend and the Python runtime. With explicit caching in
Python code, this pipeline is broken in order to create a separate
RDD which can be cached. However, ReSpark is not able to
break this pipeline since it is not visible within to the Spark
runtime. We expect it would be possible to duplicate some of
ReSpark’s logic within the PySpark API to perform similar
decisions at the Python level and communicate these back to
the ReSpark runtime, breaking the pipeline where necessary.

1 vecs.persist()
2 for split in xrange(M):
3 data = vecs.map(lambda x: x[split])
4 data.persist()
5 sub = KMeans.train(data, ...)
6 data.unpersist()
7 subquantizers.append(sub)

Fig. 18: Iterative Python code for LOPQ in Spark

1 centered.persist()
2 for iter_id in range(NITER):
3 z = centered.map(...)
4 z.persist()
5 c = z.join(centered)....collect()
6 ub, _, ua = np.linalg.svd(c[0][1])
7 rot = np.array(ua.transpose()

.dot(ub.transpose()))

Fig. 19: Iterative Python code for ITQ in Spark

Instead, we opted for the simple approach of avoiding pipelining
optimization entirely and creating separate RDDs for each
PySpark transformation. We leave further optimizations of
PySpark to reintroduce this pipelining for future work.

LOPQ

SIFT1M GIST1M BigITQ

Default 543.16s 2138.39s 400.65s

ReSpark 554.54s 2483.88s 410.05s

NoCache 755.48s 2698.31s 408.77s

TABLE II: LOPQ and BigITQ runtime using ReSpark

F. Iterative quantization

A simplified excerpt of the code used for the algorithm is
given in Figure 19. The results of these experiments are in
Table II. In this case, we see that the algorithm benefits very
little from caching. ReSpark introduces a small overhead of
approximately 2% compared to caching which is done manually.
This overhead results from the tracking done by ReSpark as
well as the breaking of Python pipelines as discussed in the
previous section.

VI. RELATED WORK

Opportunities for optimizing iterative computations have
been explored for Hadoop and MapReduce [2]. HaLoop [14]
modifies MapReduce to allow developers to explicitly express
iterative computation. These iterative jobs are then optimized
by colocating their tasks operating on the same partition.
Furthermore, the data used by each task is cached on each
node. While this provided significant speedup, we note that the
scheduling and caching policies of Spark are able to provide
similar optimizations without specific awareness of iteration.
In addition to scheduling optimizations, iMapReduce [15]
allows map tasks to run asynchronously within an iteration.



Since computation in Spark is lazy, this explicit optimization
is unnecessary. iHadoop [16] further exploits asynchrony by
also checking loop termination in parallel with speculative
execution of the following iteration. If the algorithm is deemed
to have terminated, the additional iteration is aborted. Since
computations in Spark are lazy, we note that attempting
the same optimization may prove harmful. The results of
the previous iteration may not be materialized and checking
termination in parallel may result in redundant evaluation since
the Spark scheduler does not avoid duplicate execution. We
leave further exploration of this technique to future work.

Several other pieces of existing work have attempted to
optimize the use of caching in Spark. Neutrino [17] and
the work of Yang et al. [18] select caching strategies for
each RDD partition. To perform this selection, an execution
trace without caching is required, which ReSpark avoids.
RDDShare [19] identifies views which can be cached in Spark
SQL queries to improve future performance. This does not
allow for optimization within a single job and only works with
SQL queries. Quartet [20] has a similar goal of optimizing the
sharing of data across jobs and functions. However, Quartet
only optimizes the use of cached partitions of files and does
not accelerate jobs using in-memory data. LCS [21] is a new
cache eviction strategy for Spark that attempts to make more
efficient use of the cache by keeping partitions which are
expected to be more expensive to compute. While this results
in more effective use of RDDs which have been annotated
by application programmers, it does not solve the problem
of deciding what to put in the cache. Furthermore, LCS still
suffers from the unpersist issue discussed in Section IV-C.

Apache Flink [22] is designed to support batch and stream
processing in a single execution engine. Flink includes support
for iteration steps which expresses iteration explicitly to the
runtime. While Flink does perform some automated caching
and scheduling optimization, when using Flink’s iteration steps,
only data from the immediately preceding iteration can be used.
This is unlike Spark where each iteration can make use of
arbitrary references to previously computed data. However,
similar optimizations to Spark scheduling similar to those used
in Flink may prove beneficial.

VII. CONCLUSIONS AND FUTURE WORK

We modified the Apache Spark distributed computing
framework to enable automatic caching of intermediate results.
Our modifications, which we refer to as ReSpark, avoid the
need to explicitly mark which data should be cached, a process
which can be surprisingly unintuitive and in some cases,
require detailed knowledge of Spark internals. Instead, we
automatically select which results should be placed in the cache
and when those results can be removed. We removed explicit
caching annotations from several programs and compared
ReSpark’s performance with the original applications. In com-
paring ReSpark’s automated decisions with manual decisions
made by expert Spark developers, we see that ReSpark is able

to obtain much of the benefit of caching without the need for
expert knowledge.

There are further opportunities to introduce automatic
optimizations for Spark. While ReSpark has demonstrated the
effectiveness of inferring cache annotations, it is still subject to
Spark’s LRU cache eviction policy. An eviction policy which
considers recomputation cost may be more effective. In addition,
the number of partitions used in an RDD or the number of
executors also have an impact on performance. Like caching
annotations, these values currently must be determined via
expert knowledge of Spark and also trial and error. Automating
caching also introduces the possibility to modify caching
decisions based on parameters such available memory and
processing power. These runtime-dependent optimizations
present a rich opportunity for future work.

REFERENCES

[1] M. Zaharia et al., “Spark: Cluster computing with working sets,”
HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan 2008.

[3] M. Zaharia et al., “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. EuroSys ’10’. New
York, NY, USA: ACM, 2010, pp. 265–278.

[4] M. Li et al., “SparkBench: a Spark benchmarking suite characterizing
large-scale in-memory data analytics,” Cluster Computing, vol. 20, no. 3,
pp. 2575–2589, Sep 2017.

[5] Y. Kalantidis and Y. Avrithis, “Locally optimized product quantization
for approximate nearest neighbor search,” in IEEE CVPR, June 2014,
pp. 2329–2336.

[6] C. Mellina and M. Kurovski, retrieved Jan. 31, 2019. [Online]. Available:
https://github.com/yahoo/lopq

[7] R. Girdhar, retrieved Jan. 31, 2019. [Online]. Available: https:
//github.com/rohitgirdhar/BigITQ

[8] Y. Gong et al., “Iterative quantization: A procrustean approach to learning
binary codes for large-scale image retrieval,” IEEE TPAMI, vol. 35, no. 12,
pp. 2916–2929, Dec 2013.

[9] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[10] B. Bahmani et al., “Scalable k-means++,” Proc. VLDB Endow., vol. 5,
no. 7, pp. 622–633, Mar. 2012.

[11] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in Proc. of SIGMOD ’10, ser. SIGMOD ’10. New York, NY, USA:
ACM, 2010, pp. 135–146.

[12] L. Page et al., “The pagerank citation ranking: Bringing order to the
web,” Stanford InfoLab, Technical Report 1999-66, November 1999.

[13] H. Jégou et al., “Product quantization for nearest neighbor search,” IEEE
TPAMI, vol. 33, no. 1, pp. 117–128, Jan. 2011.

[14] Y. Bu et al., “HaLoop: Efficient iterative data processing on large clusters,”
Proc. VLDB Endow., vol. 3, no. 1–2, pp. 285–296, Sep 2010.

[15] Y. Zhang et al., “iMapReduce: A distributed computing framework for
iterative computation,” Journal of Grid Computing, vol. 10, no. 1, pp.
47–68, Mar 2012.

[16] E. Elnikety et al., iHadoop: Asynchronous Iterations for MapReduce.
IEEE, Nov 2011, pp. 81–90.

[17] E. o. Xu, “Neutrino: Revisiting memory caching for iterative data
analytics,” in HotStorage 16. USENIX Association, 2016.

[18] Z. Yang et al., “Intermediate data caching optimization for multi-stage
and parallel big data frameworks,” in IEEE CLOUD, 2018, pp. 277–284.

[19] H. Chao-Qiang et al., “Rddshare: Reusing results of spark rdd,” in IEEE
DSC 2016, Jun, pp. 370–375.

[20] F. Deslauriers et al., “Quartet: Harmonizing task scheduling and caching
for cluster computing,” in HotStorage 16. USENIX Association, 2016.

[21] Y. Geng et al., “LCS: An efficient data eviction strategy for Spark,”
International Journal of Parallel Programming, pp. 1–13, Nov 2016.

[22] P. Carbone et al., “Apache Flink™: Stream and batch processing in a
single engine,” IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, 2015.


